CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
基本信息
- 批准号:0645676
- 负责人:
- 金额:$ 31.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Asymptotic equivalence, one of the most important statistical contributions of Lucien Le Cam, is a theory to build the connections among various statistical models. If two models are asymptotically equivalent, all asymptotically optimal statistical estimators can be carried over from one model to the other. A basic principle of establishing asymptotic equivalence is to approximate a complicated statistical model by a more tractable one. The Gaussian location model is a tractable model that captures the essence of a number of statistical settings. The investigator studies explicit and practical procedures to convert a general nonparametric estimation to a Gaussian regression, using improved quantile coupling inequalities and new variance stabilization transformations. Other statistical problems are better understood by relating them to Poisson process models. The investigator studies infinitely divisible approximation to density estimation and its connection to nonparametric edge estimation and classification. The investigator is also proposed to study a long-standing issue in this area -- asymptotic equivalence theory for unbounded loss, and to study the asymptotic equivalence theory for multiple comparisons, functional data analysis and long memory models. The project would help statisticians in many areas such as robust nonparametric estimation, machine learning, multiple comparison, functional data analysis, long memory models and generalized linear models, to understand and appreciate the simplification of Le Cam's theory and use it as a guidance to produce new theory and methodologies. The models the investigator is studying can be used in signal and image processing, calling data analysis, detection of bioweapons use, Genomic research, disease prevention, etc. The project will integrate research and education by teaching courses on decision theory, by organizing seminars and workshops to disseminate and preserve Le Cam's theory, and by advising graduate students working on this topic. The investigator will serve as the Diversity Coordinator for graduate student admissions in the Yale Statistics Department, and will seek to attract women and minorities to do research on the grant.
渐近等价理论是Lucien Le Cam在统计学上的重要贡献之一,它是一种将各种统计模型联系起来的理论。如果两个模型是渐近等价的,则所有渐近最优统计估计量都可以从一个模型转移到另一个模型。 建立渐近等价的一个基本原则是用一个更易处理的模型来近似一个复杂的统计模型。高斯位置模型是一个易于处理的模型,它捕捉了许多统计设置的本质。 调查研究明确和实用的程序转换为一般的非参数估计高斯回归,使用改进的分位数耦合不等式和新的方差稳定化变换。其他统计问题通过与泊松过程模型相联系可以更好地理解。研究了密度估计的无限可分近似及其与非参数边缘估计和分类的关系。研究者还建议研究该领域的一个长期存在的问题-无界损失的渐近等价理论,并研究多重比较,功能数据分析和长记忆模型的渐近等价理论。该项目将帮助许多领域的统计学家,如稳健的非参数估计、机器学习、多重比较、功能数据分析、长记忆模型和广义线性模型,理解和欣赏Le Cam理论的简化,并将其用作产生新理论和方法的指导。研究人员正在研究的模型可用于信号和图像处理,呼叫数据分析,生物武器使用检测,基因组研究,疾病预防等。该项目将通过教授决策理论课程,组织研讨会和讲习班来传播和保存Le Cam的理论,并为研究生提供建议,从而整合研究和教育。调查员将担任耶鲁统计系研究生招生的多样性协调员,并将寻求吸引妇女和少数民族对赠款进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huibin Zhou其他文献
Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System
DDO-OFDM传输系统的三维自适应调制与编码
- DOI:
10.1109/jphot.2017.2690691 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.4
- 作者:
Xi Chen;Zhenhua Feng;Ming Tang;Borui Li;Huibin Zhou;Songnian Fu;Deming Liu - 通讯作者:
Deming Liu
Near-Diffraction- and Near-Dispersion-Free OAM Pulse Having a Controllable Group Velocity by Coherently Combining Different Bessel Beams Based on Space-Time Correlations
基于时空相关性的不同贝塞尔光束相干组合获得群速度可控的近衍射和近色散OAM脉冲
- DOI:
10.1364/fio.2020.fm7c.7 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pang;K. Zou;Hao Song;Zhe Zhao;A. Minoofar;Runzhou Zhang;Cong Liu;Haoqian Song;Huibin Zhou;X. Su;N. Hu;M. Tur;A. Willner - 通讯作者:
A. Willner
Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
利用携带轨道角动量的结构化太赫兹光束的复用进行高容量通信。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Huibin Zhou;X. Su;A. Minoofar;Runzhou Zhang;K. Zou;Hao Song;K. Pang;Haoqian Song;N. Hu;Zhe Zhao;A. Almaiman;S. Zach;M. Tur;A. Molisch;Hirofumi Sasaki;Doohwan Lee;A. Willner - 通讯作者:
A. Willner
Free-space mid-IR communications using wavelength and mode division multiplexing
使用波长和模分复用的自由空间中红外通信
- DOI:
10.1016/j.optcom.2023.129518 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
A. Willner;K. Zou;K. Pang;Hao Song;Huibin Zhou;A. Minoofar;X. Su - 通讯作者:
X. Su
Experimental Demonstration of Tunable Space-Time Wave Packets Carrying Time- and Longitudinal-Varying OAM
携带时变和纵变OAM的可调谐时空波包的实验演示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
X. Su;K. Zou;Huibin Zhou;Hao Song;Yuxiang Duan;M. Karpov;T. Kippenberg;M. Tur;D. Christodoulides;A. Willner - 通讯作者:
A. Willner
Huibin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huibin Zhou', 18)}}的其他基金
Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
- 批准号:
2112918 - 财政年份:2021
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
- 批准号:
1811740 - 财政年份:2018
- 资助金额:
$ 31.04万 - 项目类别:
Continuing Grant
Optimal Estimation of Statistical Networks
统计网络的最优估计
- 批准号:
1507511 - 财政年份:2015
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
- 批准号:
1534545 - 财政年份:2015
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Estimation of Functionals of High Dimensional Covariance Matrices
高维协方差矩阵泛函的估计
- 批准号:
1209191 - 财政年份:2012
- 资助金额:
$ 31.04万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications
FRG:协作研究:高维数据的统计推断:理论、方法和应用
- 批准号:
0854975 - 财政年份:2009
- 资助金额:
$ 31.04万 - 项目类别:
Continuing Grant
Innovation and Inventiveness in Statistical Methodologies
统计方法的创新和创造性
- 批准号:
0852498 - 财政年份:2008
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
相似海外基金
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2022
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2021
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2020
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual
Non-Asymptotic Statistical Similarity Measures
非渐近统计相似性度量
- 批准号:
424522268 - 财政年份:2019
- 资助金额:
$ 31.04万 - 项目类别:
Research Fellowships
Asymptotic Equivalence of Quantum Statistical Models
量子统计模型的渐近等价
- 批准号:
1915884 - 财政年份:2019
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series
合作研究:高维时间序列的渐近统计推断
- 批准号:
1916351 - 财政年份:2019
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2019
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Asymptotic Statistical Inference for High-dimensional Time Series
合作研究:高维时间序列的渐近统计推断
- 批准号:
1916290 - 财政年份:2019
- 资助金额:
$ 31.04万 - 项目类别:
Standard Grant
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2018
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic analysis for point and interval estimation in some statistical models
某些统计模型中点估计和区间估计的渐近分析
- 批准号:
RGPIN-2017-06304 - 财政年份:2017
- 资助金额:
$ 31.04万 - 项目类别:
Discovery Grants Program - Individual