Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface

黎曼曲面上有界解析函数代数的泛函分析研究

基本信息

  • 批准号:
    16540132
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

1. Studies on Riemann surfaces and bounded analytic functions and harmonic functions on them:In the case that a given Riemann surface is not included openly and homeomorphically in the maximal ideal space of the algebra of all bounded analytic functions, we find a condition on a Riemann surface whose Shilov boundary is totally disconeccted. This result can be applied to the uniqueness theorem of linear extremal problem. Also, we studied the structure of the fibre in the maximal ideal space. In addition, we show that Royden's resolution of a Riemann surface can be constructed by the method of simultaneous analytic continuation of a give family of meromorphic functions.We studied on relations between the Martin boundary and harmonic functions. We succeeded in a characterization for the existence of Green functions on a infinite-sheeted covering Riemann surface over the Riemann sphere, that is obtained by pasting a pair of sheets along each curve in a given sequence of curves, in terms of the sequence of capacities of curves.2. Stuies on Hardy classes and the function theory of several variables:We give the best possible estimate of the norm of cross-commutators of two subnormal operators by means of spectral area, and generalized a former result to the case of p-quasi normal operators.We give a characterization of weighted Herz space by means of wavelets. Our result correct an error in the result published by Tang-Yang in 2000, and further showed that our system of wavelets form an unconditional basis.We gave a new type of factorization of an inner function in relation of connected components of the zero of the inner function, which solves a problem posed in a paper published in 2004. We also studies when a linear combination of composition operators is compact for an analytic function space.
1.关于Riemann曲面及其上有界解析函数和调和函数的研究:在给定的Riemann曲面在所有有界解析函数的代数的极大理想空间中不是开同胚地包含的情况下,我们在Riemann曲面上找到了其Shilov边界完全不连续的条件。这一结果可应用于线性极值问题的唯一性定理。我们还研究了极大理想空间中纤维的结构。此外,我们还证明了Riemann曲面的Royden分解可以由给定的亚纯函数族的同时解析延拓方法来构造。我们研究了Martin边界与调和函数之间的关系。我们成功地刻画了黎曼球面上无限薄片覆盖黎曼曲面上格林函数的存在性,这是通过在给定的曲线序列中的每条曲线上粘贴一对薄片来获得的,根据曲线的容量序列。研究了Hardy类和多元函数理论:借助于谱面积给出了两个次正规算子的交叉交换子范数的最佳估计,并将以前的结果推广到p-拟正规算子的情形,利用小波给出了加权Herz空间的一个刻画.我们的结果纠正了唐阳在2000年发表的结果中的一个错误,进一步证明了我们的小波系形成了一个无条件基.我们给出了一种新的内函数的因式分解,它解决了2004年发表的一篇论文中提出的一个问题.我们还研究了对于解析函数空间,复合算子的线性组合何时是紧的。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a class of closed prime ideals in H∞
关于 H∞ 中的一类闭素理想
Double commuting compresset shifts and generalized interpolation in the Hardy space over the bidisc
Bidisc 上的 Hardy 空间中的双通勤压缩组移位和广义插值
Hyperbolic Riemann surfaces without unbounded positive haromic functions
没有无界正调和函数的双曲黎曼曲面
Isometric composition operators between two weighted hardy spaces
两个加权 Hardy 空间之间的等距合成运算符
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中路 貴彦;瀬戸 道生
  • 通讯作者:
    瀬戸 道生
Backward shift invariant subspaces in the bidisc
  • DOI:
    10.14492/hokmj/1285766003
  • 发表时间:
    2000-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAYASHI Mikihiro其他文献

HAYASHI Mikihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAYASHI Mikihiro', 18)}}的其他基金

The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
  • 批准号:
    12640147
  • 财政年份:
    2000
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Topological Invariants of the Maximal Ideal Space of a Banach Algebra
Banach代数最大理想空间的拓扑不变量
  • 批准号:
    7407435
  • 财政年份:
    1974
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
TOPOLOGICAL INVARIANTS OF THE MAXIMAL IDEAL SPACE OF A BANACH ALGEBRA
Banach代数最大理想空间的拓扑不变量
  • 批准号:
    7462887
  • 财政年份:
    1974
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了