Structure of ideals in the space of bounded analytic functions and operator theory

有界解析函数空间中的理想结构和算子理论

基本信息

  • 批准号:
    13440043
  • 负责人:
  • 金额:
    $ 5.95万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

Izuchi (head investigator) studied the ideal structure of H^∞ and the operator theory on it, and got the following. 1)Solved Suarez's problem concerned with trivial points in M(H^∞). 2)Solved 2 problems of Gorkin and Mortini, one is concerned with closed prime ideals of H^∞, and another one is minimal κ-hulls. 3)Represented "singularity" and "absolutely continuity" on M(H^∞) of singular positive measures, and applied it to study the division problem in H^∞ + C. 4)Gave a sufficient condition on x in M(H^∞) for which the support set of a representing measure in maximal. 5)Described the connected compornents in the set of composition operators on H^∞ with the operator norm. 6)With Nakazi and Seto, studied backward shift invariant subspaces N on the torus, and determined N on which the natural two operators commute. 7)Wiht Yang, determined N on which the backward shift is contractive.On the results of investigators, Huruya with Cho studied log-hyponormal operators, got a solution of Riemann-Hilbert's problem, and solved Aluthge-Wang's problem concerned with kernels of w-hyponormal operators. Matsugu studied spaces of analytic functions on the n-dimensinal ball, gave a characterization of weighted Bergaman-Privalov spaces with Yamashita-Stoll type, and determined isometries on it. Hatori gave a representation theorem on ring homomorphisms of commutative Banach algebras, and gave a condition for which a ring homomorphism is linear. Takagi determined closed ranges, essential norms, and Hyers-Ulam stability constants of weighted composition operators on function algebras.
Izuchi(首席研究员)研究了H^∞的理想结构及其上的算子理论,得到了以下结论。1)解决了Suarez在M(H^∞)中涉及平凡点的问题。2)解决了Gorkin和Mortini提出的两个问题,一个是H^∞的闭素理想问题,另一个是极小κ-壳问题。3)表示奇异正测度在M(H^∞)上的“奇性”和“绝对连续性”,并将其应用于研究H^∞+C中的除法问题。4)给出了M(H^∞)中x的一个表示测度的支撑集最大的充分条件。5)用算子范数刻画了H^∞上的复合算子集的连通分支。6)与Nakazi和Seto研究了环面上的后移不变子空间N,并确定了自然两个算子在其上交换的空间N。7)与Yang,确定了向后移位在其上压缩的N,在此基础上,Huruya和Cho研究了对数次正规算子,得到了Riemann-Hilbert问题的解,并解决了Aluthge-Wang关于w-次正规算子核的问题。Matsugu研究了n维球上的解析函数空间,给出了具有Yamashita-Stoll型的加权Bergaman-Privalov空间的特征,并确定了其上的等距关系。Hatori给出了交换Banach代数的环同态的一个表示定理,并给出了环同态为线性的一个条件。Takagi确定了函数代数上加权复合算子的闭值域、本质范数和Hyers-Ulam稳定常数。

项目成果

期刊论文数量(234)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Matsugu, S.Ueki: "Algebra homomorphisms on the Privalov spaces in the unit ball B_n."Far East J.Math.Sci.. 11. 1-17 (2003)
Y.Matsugu, S.Ueki:“单位球 B_n 中 Privalov 空间的代数同态。”Far East J.Math.Sci.. 11. 1-17 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroyuki Takagi, Sin-Ei Takahashi, Takeshi Miura: "Polynomial identities that imply commutativity for rings."Linear Algebra Appl.. 341. 299-307 (2002)
Hiroyuki Takagi、Sin-Ei Takahashi、Takeshi Miura:“暗示环交换性的多项式恒等式。”线性代数应用 341. 299-307 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroyuki Takagi, Sin-Ei Takahashi, Takeshi Miura: "The Hyers-Ulam stability constants of first order linear differential operators."J.Math.Anal.Appl.. (to appear).
Hiroyuki Takagi、Sin-Ei Takahashi、Takeshi Miura:“一阶线性微分算子的 Hyers-Ulam 稳定常数。”J.Math.Anal.Appl..(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Muneo Cho: "Riemann-Hilbert problem for operators associated with hyponormal operators and increasing functions"J.Pure Appl.Math.. 9. 145-151 (2003)
Muneo Cho:“与次正规算子和增函数相关的算子的黎曼-希尔伯特问题”J.Pure Appl.Math.. 9. 145-151 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuo Matsugu: "Algebra homomorphisms on the Privalov spaces in the unit ball B_n"Far East J.Math.Sci.. 11. 1-17 (2003)
Yasuo Matsugu:“单位球 B_n 中 Privalov 空间的代数同态”Far East J.Math.Sci.. 11. 1-17 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IZUCHI Keiji其他文献

IZUCHI Keiji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IZUCHI Keiji', 18)}}的其他基金

Study of operators on spaces of analytic functions and the space of bounded analytic functions
解析函数空间和有界解析函数空间算子的研究
  • 批准号:
    24540164
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of bounded analytic functions and associated operators on spaces of analytic functions
有界解析函数及解析函数空间上的关联算子的研究
  • 批准号:
    21540166
  • 财政年份:
    2009
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of the structure of operators on analytic function spaces and their invariant subspaces
解析函数空间及其不变子空间算子结构的研究
  • 批准号:
    16340037
  • 财政年份:
    2004
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on families of functions determining structures of spaces of analytic functions
决定解析函数空间结构的函数族研究
  • 批准号:
    10440039
  • 财政年份:
    1998
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了