Anew development of real Hardy spaces in non-commutative harmonic analysis-a fusion of representation theory, real analysis, and probability
非交换调和分析中实Hardy空间的新发展——表示论、实分析和概率的融合
基本信息
- 批准号:16540168
- 负责人:
- 金额:$ 2.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In these 4 years research we have obtained significant results on a characterization of real Hardy spaces in non-commutative harmonic analysis and their applications. In the first stage our target was K-bi-invariant functions on real rank one semisimple Lie groups G, however, it extended to Jambi analysis, and further to Sturm-Liouville hypergroups.We succeed to obtain a relation between the real Hardy space H^1(Δ), which is defined by using a radial maximal function, and the classical real Hardy space H^1P(R). This relation follows from an integral expression of the Abel transform, which is given by fractional integrals. The key idea is to express the inverse of the Abel transform in terms of ordinary fractional derivatives. This result is also useful to analyze boundedness of some integral operators.As an application of H^1(Δ), we consider (H^1(Δ), L^1(Δ)) boundedness of the Poisson maximal operator, the Littlewood-Paley g-function and the Lusin area function S. It is well-known that these operators are bounded on L^P(Δ) for p>1, however we have no results in the case of p=1. Hence our (H^1(Δ), L1(Δ)) boundedness is new and significant. In the proof we use the characterization of H1(Δ) stated above and reduce the arguments in non-commutative harmonic analysis to Euclidean analysis. In this process we expect that integral operators have the same properties in the Euclidean case. However, in our research we notice that the (H1^(Δ), L^<1(Δ)>) boundedness of the Lusin area operator S, which is defined by using a non-tangential integral, depends on the shape of the non-tangential domain, especially the angle of the domain. This result is based on the fact that Δ has an exponential growth order. This phenomenon is unique and therefore, is quite interesting.
在这4年的研究中,我们对非交换调和分析中实Hardy空间的刻画及其应用取得了重要的成果。在第一阶段,我们的目标是实秩1半单李群G上的k -双不变函数,然而,它扩展到Jambi分析,并进一步扩展到Sturm-Liouville超群。我们成功地得到了用径向极大函数定义的实Hardy空间H^1(Δ)与经典实Hardy空间H^1P(R)之间的关系。这个关系来源于阿贝尔变换的积分表达式,它是由分数积分给出的。关键思想是用普通分数阶导数来表示阿贝尔变换的逆。该结果对分析某些积分算子的有界性也有帮助。作为H^1(Δ)的应用,我们考虑了泊松极大算子、Littlewood-Paley g函数和Lusin区域函数s (H^1(Δ)、L^1(Δ))的有界性。众所周知,对于P >1,这些算子在L^P(Δ)上是有界的,但是在P =1的情况下我们没有结果。因此我们的(H^1(Δ), L1(Δ))有界性是新的和重要的。在证明中,我们使用上述H1(Δ)的表征,并将非交换调和分析中的论点简化为欧几里得分析。在这个过程中,我们期望积分算子在欧几里得情况下具有相同的性质。然而,在我们的研究中,我们注意到Lusin区域算子S的(H1^(Δ), L^<1(Δ)>)有界性取决于非切域的形状,特别是域的角度,这是用非切积分定义的。这个结果是基于Δ具有指数增长顺序的事实。这种现象很独特,因此也很有趣。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real Hardy spaces on real rank 1 semisimple Lie groups
- DOI:10.4099/math1924.31.281
- 发表时间:2005-12
- 期刊:
- 影响因子:0
- 作者:T. Kawazoe
- 通讯作者:T. Kawazoe
Generalized Hardy's theorem for Jacobi analysis
雅可比分析的广义哈代定理
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Takeshi;Kawazoe;Takeshi Kawazoe;Takeshi Kawazoe;Takeshi Kawazoe;Takeshi Kawazoe
- 通讯作者:Takeshi Kawazoe
H^1-estimates of the Littlewood-Paley g-function on real rank one semisimple Lie groups
实一阶半单李群上 Littlewood-Paley g 函数的 H^1 估计
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Takeshi;Kawazoe
- 通讯作者:Kawazoe
H^1-estimates of the Littlewood-Paley g-function and Lusin area function on real rank 1 semisimple Lie groups
实秩 1 半单李群上 Littlewood-Paley g 函数和 Lusin 面积函数的 H^1 估计
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Takeshi;Kawazoe
- 通讯作者:Kawazoe
Fractional calculus and analytic continuation of complex Fourier-Jacobi transform
复数傅里叶-雅可比变换的分数阶微积分和解析延拓
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Takeshi;Kawazoe
- 通讯作者:Kawazoe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAZOE Takeshi其他文献
KAWAZOE Takeshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAZOE Takeshi', 18)}}的其他基金
Construction of multi-dimensional singular integral theory in non-commutative harmonic analysis - A new method combining real analysis and representation theory
非交换调和分析中多维奇异积分理论的构建——实分析与表示论相结合的新方法
- 批准号:
16K05211 - 财政年份:2016
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New development in non-commutative harmonic analysis related to singular integrals - A fusion of representation theory and real analysis
奇异积分非交换调和分析新进展——表示论与实分析的融合
- 批准号:
24540191 - 财政年份:2012
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of Singular Integral Operators in Non-commutative Harmonic Analysis. A verification of Use of Real Hardy Spaces.
非交换调和分析中的奇异积分算子理论。
- 批准号:
20540188 - 财政年份:2008
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weight theory related to harmonic analysis on groups -in harmony with representation theory
与群调和分析相关的权重理论——与表示论一致
- 批准号:
13640190 - 财政年份:2001
- 资助金额:
$ 2.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




