studies on the relationship of the structure of manifolds and p-harmonic functions
流形结构与p调和函数关系的研究
基本信息
- 批准号:16540208
- 负责人:
- 金额:$ 2.2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
P-Laplacian Δ_p(1<P<∞)is defined as operator acting on functions on Riemannian manifolds. The p-harmonic function u is defind by Δ_<p>u=div(|∇u|^<p-2> ∇u)=0. In the case of p=2, it becomes the usual harmonic map. We may consider the p-harmonic function the extension of harmonic function. In fact, the p-harmonic function is a critical point of the p-energy functional. Euler-Lagrange equation of it is that of the p-harmonic function. Because this equation is a nonlinear elliptic partial equation, it is hard to handle. We can define the p-Laplacian on graphs also, and define the p-harmonic function on graphs.We consider the spectrum of the p-Laplacian on graphs, p-harmonic morphisms between two graphs, and estimates for the solutions of p-Laplace equations on graphs. More precisely we prove a Ceeger type inequality and a Brooks type inequality for infinite graphs. We showed p-harmonic morphisms and horizontal conformal maps between two graphs are equivalent. We give some estimates for solutions of p-Laplace equations, which coincide with Green kernels in the case of p=2.Harmonic maps flow and p-harmonics flow are closely related to harmonic maps and p-harmonic maps.The stationary state of harmonic maps flow becomes the harmonic map, and the stationary state of p-harmonic maps flow becomes the p-harmonic map. But they do not necessarily converge, but blow-up of the solutions happen. We report this phenomena as research notes in Bulletin of Shikoku University.
P-Laplacian Δ p(1<P<∞)定义为作用于黎曼流形上函数的算子。p-调和函数u定义为Δ_<p>u=div(|u|(<p-2>^^u)=0.在p=2的情况下,它成为通常的调和映射。p-调和函数可以看作是调和函数的延拓。实际上,p-调和函数是p-能量泛函的临界点。它的欧拉-拉格朗日方程就是p-调和函数的欧拉-拉格朗日方程。由于该方程是一个非线性椭圆型偏微分方程,所以处理起来比较困难。我们也可以定义图上的p-Laplacian,定义图上的p-调和函数,考虑图上的p-Laplacian的谱,两个图之间的p-调和态射,以及图上的p-Laplace方程的解的估计。更精确地证明了无限图的一个Ceeger型不等式和一个布鲁克斯型不等式。我们证明了两个图之间的p-调和态射和水平共形映射是等价的。给出了p-Laplace方程解的估计,在p= 2的情况下,这些估计与绿色核一致.调和映射流和p-调和映射流与调和映射和p-调和映射密切相关,调和映射流的稳态成为调和映射,p-调和映射流的稳态成为p-调和映射.但它们不一定收敛,但解的爆破发生了。我们将这一现象作为研究笔记发表在四国大学学报上。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
調和写像流について
关于谐波映射流程
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:[2] Y.Muroya;E.Ishiwata;N.Guglielmi;N.Fukagai;N.Fukagai;深貝暢良;N.Fukagai;N.Fukagai;N.Fukagai;竹内 博
- 通讯作者:竹内 博
Cut loci and distance functions
切割轨迹和距离函数
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yuji Kobayashi;Tomoko Adachi;小林 ゆう治(編集);小林ゆう治;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;HiroakI Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;谷口浩朗;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;Hiroaki Taniguchi;J. Itoh and L. Yuan;H. Oshima;J. Itoh & T. Zamfirescu;J. Itoh & T. Sakai
- 通讯作者:J. Itoh & T. Sakai
Boundary regularity for Ricci equation, geometori Convergence, and Gel'fand's inverse boundary problem
Ricci 方程的边界正则性、几何收敛性和 Gelfand 逆边界问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M. Anderson;A. Katsuda;Y. Kurylev;M. Lassas;M. Taylor
- 通讯作者:M. Taylor
Boundary regularity for Ricci equation,geometric convergence,and Gel'fand's inverse boundary problem
Ricci方程的边界正则性、几何收敛性和Gelfand的逆边界问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Anderson;A.Katsuda;et. al.
- 通讯作者:et. al.
Notes on the harmonic map heat flows(In Japanese)
关于调和图热流的注释(日语)
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:[2] Y.Muroya;E.Ishiwata;N.Guglielmi;N.Fukagai;N.Fukagai;深貝暢良;N.Fukagai;N.Fukagai;N.Fukagai;竹内 博;Hiroshi Takeuchi
- 通讯作者:Hiroshi Takeuchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEUCHI Hiroshi其他文献
TAKEUCHI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEUCHI Hiroshi', 18)}}的其他基金
Novel function of the signaling molecule, PRIP.
信号分子 PRIP 的新功能。
- 批准号:
21791807 - 财政年份:2009
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Development of Support System for Healthcare Against Metabolic-Syndrome
代谢综合征医疗保健支持体系建设研究
- 批准号:
20300222 - 财政年份:2008
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Roles of a novel signaling molecule in salivary secretion
新型信号分子在唾液分泌中的作用
- 批准号:
19791368 - 财政年份:2007
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Improvement of a geometry optimization method for molecular clusters and its application
分子簇几何优化方法的改进及其应用
- 批准号:
19550001 - 财政年份:2007
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Personal Dynamic Healthcare System Utilizing Mobile Phone and Web technologies
利用移动电话和网络技术的个人动态医疗保健系统
- 批准号:
16500457 - 财政年份:2004
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The properties of P-harmonic maps and the application to Geometry
P调和映射的性质及其在几何中的应用
- 批准号:
11640221 - 财政年份:1999
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pollution of molluscicide and concentration in organs.
杀螺剂的污染及其在器官中的浓度。
- 批准号:
07045047 - 财政年份:1995
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for international Scientific Research
Signal transduction systems of achatin-I,a neuropeptide having a D-phenylalanine residue.
achatin-I(一种具有 D-苯丙氨酸残基的神经肽)的信号转导系统。
- 批准号:
06680758 - 财政年份:1994
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Study for the effects of neuroactive peptides newly isolated
新分离的神经活性肽的作用研究
- 批准号:
04044075 - 财政年份:1992
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for international Scientific Research
Neurophysiological and neuropharmacological investigations of achatin-I, a neuroactive peptide having a D-Phe residue.
achatin-I(一种具有 D-Phe 残基的神经活性肽)的神经生理学和神经药理学研究。
- 批准号:
02670049 - 财政年份:1990
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
- 批准号:
24540215 - 财政年份:2012
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)