距離空間上の調和関数の研究
度量空间上调和函数的研究
基本信息
- 批准号:16740034
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
今年度は主に,リーマン多様体におけるリッチ曲率の下限に相当する条件の,一般の測度距離空間での定式化を研究した.これは10年以上にわたって重要な問題として考えられてきたものであり,現在も活発に研究されている断面曲率を下から押さえた空間(アレクサンドロフ空間)を更に一般化した対象であると共に,Cheeger-Coldingらによるリッチ曲率を下から押さえた多様体の列の収束・崩壊理論に適切な枠組みを与えるものと期待される.具体的に得られた結果としては,Sturm及びLott-Villaniによって最近与えられたCurvature-Dimension条件よりも弱い,Measure Contraction Property(MCP)という条件を導入した.(Sturmも独立に同様の条件を導入している.)これはリーマン多様体の場合にはリッチ曲率の下限と同値であり,またリッチ曲率を下から押さえたリーマン多様体で知られている種々の性質(Bishop-Gromovの体積比較定理,Bonnet-Myersの定理など)がMCPを満たす測度距離空間に拡張される.また,アレクサンドロフ空間はMCPを満たす.更に,特に重要な結果として,MCPは測度距離空間の列の測度付Gromov-Hausdorff収束の下で保存され,これとGromovのプレコンパクト性定理を合わせると,MCPを満たす測度距離空間の族は測度付Gromov-Hausdorff位相でコンパクトであることがわかる.
The main purpose of this year is that the lower limit of the curvature of the multi-body system is quite high, and the general measurement distance is not suitable for the study of the format of the multi-body system. For more than 10 years, we have been working on critical issues for more than 10 years. Now, under the curvature of the cross-sectional area of the railway, the storage space (thermal storage space) is more general than before. Cheeger-Colding is sensitive to curvature. The theory of beam collapse is related to the theory of beam collapse. The specific results show that Sturm and Lott-Villani conditions are not valid recently and that the Curvature-Dimension condition is weak, while the Measure Contraction Property (MCP) condition is weak. (Sturm is independent and the condition is the same.) The lower limit of the curvature of the multi-body system is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as the lower limit of the curvature of the multi-body, and the curvature of the multi-body is the same as that of the multi-body, and the curvature of the multi-body is the same as that of the multi-body. The No, MCP, please. More importantly, the important results are as follows: the MCP measurement distance from the space column is used to save the Gromov-Hausdorff system, the Gromov measurement system is compatible with the performance theorem, and the MCP measurement distance is compared to the Gromov-Hausdorff phase measurement system.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harmonicity of totally geodesic maps into nonpositively curved metric spaces
全测地线映射到非正弯曲度量空间的调和性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:合田洋;松田 浩;森藤孝之;松田 浩;Shin-ichi Ohta
- 通讯作者:Shin-ichi Ohta
Topology of complete manifolds with radial curvature bounded from below
具有下界径向曲率的完全流形拓扑
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Kei Kondo;Shin-ichi Ohta
- 通讯作者:Shin-ichi Ohta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
太田 慎一其他文献
太田 慎一的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('太田 慎一', 18)}}的其他基金
距離空間上の勾配流理論の新展開
度量空间梯度流理论新进展
- 批准号:
24K00523 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of optimal transport theory and gradient flows
最优输运理论和梯度流的几何
- 批准号:
19H01786 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
距離空間の間の写像とソボレフ空間
度量空间和 Sobolev 空间之间的映射
- 批准号:
03J07107 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
分離壁細胞における胃酸分泌機能に対するプリン作動物質の影響
嘌呤能物质对壁细胞胃酸分泌功能的影响
- 批准号:
63770439 - 财政年份:1988
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
リッチ曲率に関する空間の収束・崩壊とスペクトル収束の新展開
里奇曲率空间收敛/塌缩和谱收敛的新进展
- 批准号:
23K20210 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216162 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant














{{item.name}}会员




