Accurate and Fast 3D Image Reconstruction in Fluorescence Microscopy and Automatic labeling of 3D tissue structures

荧光显微镜中准确快速的 3D 图像重建和 3D 组织结构的自动标记

基本信息

  • 批准号:
    17300061
  • 负责人:
  • 金额:
    $ 9.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

This project has been aiming to evaluate and improve the new three dimensional reconstruction algorithm developed for Fluorescence Microscopy that has been proven effective for artificially generated ideal data in our previous project. In order to evaluate the effectiveness of the algorithm for actual data observed from tissue structures, we corrected actual data using a fluorescence microscope and have conducted comprehensive evaluation using the data under different conditions by changing noise level and a coupled of optical parameters. Through this evaluation, we found that the new algorithm is sensitive to PSF (Point Spread Function) parameters and, affected by non-transparent parts that contradicts the ideal situation that the deconvolution-based reconstruction theory assumes. We have spent the most of our time to solve this problem and concluded that reconstructed results would not be improved as far as using deconvolution-based-algorithm and it is necessary to develop a method that would not assume transparency for the objects. After the evaluation and adding some improvement, we also tried to develop matching algorithms for three dimensional structures between actual tissue structures observed by Fluorescence Microscopy and artificially synthesized three dimensional structures. We have examined an initial three dimensional shape modeled by a polyhedron would converge to the target shape by iteration procedure using a neural network specifically designed for the purpose.
本项目旨在评估和改进荧光显微镜新开发的三维重建算法,该算法在我们之前的项目中被证明对人工生成理想数据是有效的。为了评估算法对组织结构实际观测数据的有效性,我们使用荧光显微镜对实际数据进行校正,并通过改变噪声级和光学参数耦合,对不同条件下的数据进行综合评价。通过评估,我们发现新算法对PSF (Point Spread Function)参数敏感,并且不受非透明部分的影响,这与基于反卷积的重建理论假设的理想情况相矛盾。我们花了大部分时间来解决这个问题,并得出结论,使用基于反卷积的算法重建结果不会得到改善,有必要开发一种不假设物体透明的方法。在评估和改进之后,我们还尝试开发荧光显微镜观察到的实际组织结构与人工合成的三维结构之间的三维结构匹配算法。我们研究了由多面体建模的初始三维形状将收敛到目标形状,并使用专门设计的神经网络进行迭代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Object tracking methods for user interface
用户界面的对象跟踪方法
パターンマッチングにおけるエッジ情報の安定性の評価および安定したエッジの抽出に関する研究
模式匹配中边缘信息稳定性评价及稳定边缘提取研究
両眼固視微動を用いた立体エッジ画像生成法
利用双目固视微动的3D边缘图像生成方法
エッジの幾何学的特徴を用いたカラー画像の色領域分割に関する研究
利用边缘几何特征的彩色图像颜色区域分割研究
Simultaneously Reconstructing Transparent and Opaque Surfaces from Texture Images
从纹理图像同时重建透明和不透明表面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUMAZAWA Itsuo其他文献

KUMAZAWA Itsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUMAZAWA Itsuo', 18)}}的其他基金

Fast 3D Object Tracking using Spatially and Temporally Modurated Light Field
使用空间和时间调制光场进行快速 3D 对象跟踪
  • 批准号:
    24650080
  • 财政年份:
    2012
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Light Field Based Optical Measurement System and Its Application
基于光场的光学测量系统及其应用
  • 批准号:
    22650031
  • 财政年份:
    2010
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Improvement of usability and efficiency of user interface design by virtual manipulating space with tactile feedback
通过触觉反馈虚拟操纵空间提高用户界面设计的可用性和效率
  • 批准号:
    22300041
  • 财政年份:
    2010
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three Dimensional Imaging of Fluorescent Microscopy by Combined Use of Multiple-focused Images and Stereo Images
结合使用多焦点图像和立体图像的荧光显微镜三维成像
  • 批准号:
    19300058
  • 财政年份:
    2007
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three Dimensional Shape Modeling by Multiple Sensor Information
通过多个传感器信息进行三维形状建模
  • 批准号:
    15500100
  • 财政年份:
    2003
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra parallel computation using wave interference as means of weighted sum : Holographic neural computing
使用波干涉作为加权和的超并行计算:全息神经计算
  • 批准号:
    10680339
  • 财政年份:
    1998
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of three-dimensional image analysis technology in the echographic diagnosis for developmental dysplasia of the hip.
三维图像分析技术在发育性髋关节发育不良超声诊断中的进展
  • 批准号:
    23K08671
  • 财政年份:
    2023
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of precision three-dimensional image recognition using a novel microwave breast diagnostic imaging system
使用新型微波乳腺诊断成像系统开发精密三维图像识别
  • 批准号:
    20K16444
  • 财政年份:
    2020
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Three-dimensional image comprehensive analysis of the proteins produced in the Japanese birch plantlet infected with a canker-rot fungus
感染溃疡菌的日本桦苗产生的蛋白质的三维图像综合分析
  • 批准号:
    17K07833
  • 财政年份:
    2017
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effectiveness of three-dimensional image analysis for surgical simulation of living donor kidney transplantation with multiple renal artery graft
三维图像分析在活体肾移植多肾动脉移植手术模拟中的有效性
  • 批准号:
    17K18127
  • 财政年份:
    2017
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Method for wide-area, multiple viewpoints, and holographic three-dimensional image measurement
广域多视点全息三维图像测量方法
  • 批准号:
    17K19987
  • 财政年份:
    2017
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Intraoperative planning and navigation based on three-dimensional image processing combining ultrasound and CT
基于三维图像处理的超声与CT相结合的术中规划与导航
  • 批准号:
    16H02899
  • 财政年份:
    2016
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-contact measurement of cardiac mechanical phenomena using three-dimensional image measurement and its clinical application
三维图像测量心脏力学现象的非接触测量及其临床应用
  • 批准号:
    16K08977
  • 财政年份:
    2016
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-Dimensional Image-Guided Development and Optimization of Molecular Regulating Bone Regenerative Scaffolds
三维图像引导分子调控骨再生支架的开发与优化
  • 批准号:
    8887845
  • 财政年份:
    2015
  • 资助金额:
    $ 9.98万
  • 项目类别:
Analysis of post-transplant islet by organ transparency and macro three-dimensional image
通过器官透明度和宏观三维图像分析移植后胰岛
  • 批准号:
    15K15481
  • 财政年份:
    2015
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Three-Dimensional Image-Guided Development and Optimization of Molecular Regulating Bone Regenerative Scaffolds
三维图像引导分子调控骨再生支架的开发与优化
  • 批准号:
    9063060
  • 财政年份:
    2015
  • 资助金额:
    $ 9.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了