Ultra parallel computation using wave interference as means of weighted sum : Holographic neural computing
使用波干涉作为加权和的超并行计算:全息神经计算
基本信息
- 批准号:10680339
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
he project developed a novel approach for ultra parallel computation using interference of coherent waves as direct means of weighted snm computation for artificial neural networks. Coherent waves such as acoustic waves and lasers can interfere with each other and the amplitude of synthesized wave is determined by their phase differences. This phenomena can be utilized as means of weighted sum computation. Weighted sum is a basic operation of a neuron in the artificial neural networks which have been extensively studied for artificial intelligence purposes. The developed system uses only wave emitting and receiving devices as its components. The relative positions of these components determines the phase differences of the waves and, consequently, the ways of weighted sum. The kind of computation is coded as the positions of these components arranged on a two dimensional surface. In this fashion, the system does not require neither communication wires nor computation devices such as adder and multiplier. During the two years of this project, we proposed several ways of implementing this idea and examined the computational capabilities of the proposed systems under noisy and distorted wave conditions.
该项目开发了一种新的超并行计算方法,利用相干波的干涉作为人工神经网络加权SNM计算的直接手段。相干波如声波和激光可以相互干扰,合成波的振幅由它们的相位差决定。这种现象可以作为加权和计算的手段。加权和是人工神经网络中神经元的一种基本运算,在人工智能领域得到了广泛的研究。所开发的系统仅使用波发射和接收器件作为其组成部分。这些分量的相对位置决定了波的相位差,从而决定了加权和的方法。这种计算被编码为这些组件在二维表面上的位置。以这种方式,系统既不需要通信线路,也不需要加法器和乘法器等计算设备。在这个项目的两年中,我们提出了几种实现这一想法的方法,并检查了所提出的系统在噪声和畸变波条件下的计算能力。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
I. Kumazawa and Y. Kure: "Computation of Weighted Sum by Physical Wave Properties - Coding Problems by Unit Positions"In George D. Smith, Nigel C. Steele and Rudolf F. Albecht (eds.) Artificial Neural Nets and Genetic Algorithms. Springer Computer Science
I. Kumazawa 和 Y. Kure:“通过物理波特性计算加权和 - 按单位位置编码问题”,乔治 D. 史密斯、奈杰尔 C. 斯蒂尔和鲁道夫 F. 阿尔贝希特(编辑)人工神经网络和遗传算法。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Itsuo Kumazawa (D. Smith(eds.)): "Artificial Neural Nets and Genetic Algorithms"Springer Computer Science. 634 (1998)
Ituo Kumazawa(D. Smith(编辑)):“人工神经网络和遗传算法”施普林格计算机科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I. Kumazawa: "A Cellular neural network framework for shape representation and matching"Proceedings of Third International Conference on Knowledge-based Intelligent Information Engineering Systems. IEEE. 178-181 (1999)
I. Kumazawa:“用于形状表示和匹配的细胞神经网络框架”第三届基于知识的智能信息工程系统国际会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
石井真樹: "重み表現に線形の従属制約を導入した階層型ニューラルネットワークの写像能力"電子情報通信学会ニューロコンピューティング研究会. NC99-36. 57-62 (1999)
Maki Ishii:“引入权重表示的线性依赖约束的分层神经网络的映射能力”IEICE NC99-36 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Itsuo Kumazawa: "Learning and tracking target shapes by compact neural networks"Proceedings of ICONIP/AMZIIS/ANNES'99 International Workshop. 41-44 (1999)
Ituo Kumazawa:“通过紧凑神经网络学习和跟踪目标形状”ICONIP/AMZIIS/ANNES99 国际研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUMAZAWA Itsuo其他文献
KUMAZAWA Itsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUMAZAWA Itsuo', 18)}}的其他基金
Fast 3D Object Tracking using Spatially and Temporally Modurated Light Field
使用空间和时间调制光场进行快速 3D 对象跟踪
- 批准号:
24650080 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Light Field Based Optical Measurement System and Its Application
基于光场的光学测量系统及其应用
- 批准号:
22650031 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Improvement of usability and efficiency of user interface design by virtual manipulating space with tactile feedback
通过触觉反馈虚拟操纵空间提高用户界面设计的可用性和效率
- 批准号:
22300041 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Three Dimensional Imaging of Fluorescent Microscopy by Combined Use of Multiple-focused Images and Stereo Images
结合使用多焦点图像和立体图像的荧光显微镜三维成像
- 批准号:
19300058 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Accurate and Fast 3D Image Reconstruction in Fluorescence Microscopy and Automatic labeling of 3D tissue structures
荧光显微镜中准确快速的 3D 图像重建和 3D 组织结构的自动标记
- 批准号:
17300061 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Three Dimensional Shape Modeling by Multiple Sensor Information
通过多个传感器信息进行三维形状建模
- 批准号:
15500100 - 财政年份:2003
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant














{{item.name}}会员




