Study on properties of polarirad varieties by their sectional invariants and its applications

利用截面不变量研究Polarirad簇的性质及其应用

基本信息

  • 批准号:
    17540033
  • 负责人:
  • 金额:
    $ 2.32万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Let X be an n-dimensional smooth projective variety defined over the field of complex numbers, and let L be an ample line bundle on X. Then the pair (X, L) is called a polarized manifold. The purpose of this research is to investigate a polarized manifold's version of the theory of projective surfaces by using several sectional invariants such as the ith sectional geometric genus gi(X, L), and to give its application. We have obtained the following results for three years. (The following are main results of this research.)1. We investigated properties of the sectional Betti numbers and the sectional Hodge numbers, and the following were obtained :(1) A classification of (X, L) with b_2(X, L)= dim H^2(X, Z)or 0 〓H^<1,1>_2,(X, L)〓 1 under the assumption that L is base point free.(2) A classification of (X, L) with h^<1,1>_2(X, L)= 2 under the assumption that L is very ample.2. As an application of sectional invariants, we investigated the dimension of global sections of adjoint bundles K_x + tL. We obtained the following results which become the first step to solve some conjectures concerning the dimension of global sections of adjoint bundles.(1)The case where dimX = 3: If 0 〓 κ(K_x + L) 〓 2 or κ(X)〓 0, then dimH^0(K_x + L)> 0 holds. If κ(K_x + L)= 3, then dim H^0(m(K_x + L))> 0 holds for every integer in with in 〓 2. Moreover if L_1 and L_2 are ample line bunldes on X and K_x + L_1+ L_2 is nef, then we have dim H^0 (K_x + L_1 + L_2)> 0. (The last result is thought to be a generalization of a conjecture of Beltrametti and Sommese.)(2) The case where dim X = 4: If 0 〓 κ(K_x + L)〓 2 and K_x + L is nef, then dim H^0(K_x + L)> 0 holds. If κ(K_x + L)〓 3 and K_x + L is nef, then dim H^0(m(K_x + L))> 0 holds for every integer m with m 〓 4.
设X是复数域上定义的n维光滑射影簇,L是X上的充足线丛。则对(X,L)称为极化流形。本文利用第i个截面几何亏格gi(X,L)等截面不变量,研究了投影曲面理论的极化流形形式,并给出了它的应用.三年来,我们取得了以下成果。(The以下是这项研究的主要成果)。1.研究了截Betti数和截Hodge数的性质,得到了如下结果:(1)在L无基点的假设下,得到了(X,L)的一个分类,其中b2(X,L)= dim H^2(X,Z)或0 <$H^<1,1> 2,(X,L)<$1. (2)在L是很满的假设下,给出了(X,L)的一个分类,其中h^<1,1>_2(X,L)= 2.作为截面不变量的一个应用,我们研究了伴随丛Kx + tL的整体截面的维数.我们得到了如下结果,这些结果成为解决伴随丛整体截面维数问题的第一步。(1)当dimX = 3时:若0 <$κ(K_x + L)<$2或κ(X)<$0,则dimH^0(K_x + L)> 0成立。若κ(K_x + L)= 3,则对所有在λ 2中的整数dim H^0(m(K_x + L))> 0成立.此外,若L_1和L_2是X上的样本线丛,且K_x + L_1+ L_2是nef,则有dim H^0(K_x + L_1 + L_2)> 0. (The最后一个结果被认为是Beltrametti和Sommese猜想的推广。)(2)当dim X = 4时:若0 <$κ(K_x + L)<$2且K_x + L为nef,则dim H^0(K_x + L)> 0成立。若κ(K_x + L)<$3且K_x + L是nef,则对任意整数m,dim H^0(m(K_x + L))> 0成立,其中m <$4.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the sectional geometric genus of multi-polarized manifolds and its application
多极化流形的截面几何亏格及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKUMA Yoshiaki其他文献

FUKUMA Yoshiaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKUMA Yoshiaki', 18)}}的其他基金

"Showa 50's" as a turning point and transformation of mass media culture
“昭和50年代”作为大众传媒文化的转折点和转型
  • 批准号:
    17H01836
  • 财政年份:
    2017
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Historical sociology of magazines of "way of life"
《生活方式》杂志的历史社会学
  • 批准号:
    26590103
  • 财政年份:
    2014
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Historical Sociology of the Place of War Memory
战争记忆之地的历史社会学
  • 批准号:
    24330166
  • 财政年份:
    2012
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Postwar History of Okinawan Magazines and Recognition on War
冲绳杂志的战后历史和对战争的认识
  • 批准号:
    21653047
  • 财政年份:
    2009
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Media studies on war experiences in postwar popular culture
战后流行文化中战争经历的媒体研究
  • 批准号:
    21330125
  • 财政年份:
    2009
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on the dimension of global sections of adjoint bundles of polarized manifolds by the sectional geometric genus
用截面几何亏格研究极化流形伴丛整体截面维数
  • 批准号:
    20540045
  • 财政年份:
    2008
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A study of the relationship between the sectional invariants of polarized toric varieties and integral convex polytopes
偏振复曲面簇截面不变量与积分凸多面体关系的研究
  • 批准号:
    17K14172
  • 财政年份:
    2017
  • 资助金额:
    $ 2.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了