Cohomology Theory of Finite Groups

有限群上同调理论

基本信息

项目摘要

Many problems of fundamental importance are left unsolved in the theory of cohomology of block ideals of finite groups. Let G be a finite groups and k an algebraically closed field of prime characteristic dividing the order of G. Let B be a block ideal of kG and let D be a defect group. Let P be a subgroup of D and let H be a subgroup of G containing DC _G (D) and N_G (P). Assume that a block ideal C of kH and the block B are in Brauer correspondence and D is also a defect group of C. It is significantly important to investigate relationships between the block cohomologies H^* (G, B) and H^* (H,C). For example, when H^* (G, B) ⊆ H^* (H,C) does hold, this inclusion map should be understood through transfer maps between Hochshild cohomology rings of the blocks B and C. We showed that the (B, C) -bimodule L which is the Green correspondent of C to G x H has many nice properties which are useful not only for applications for the cohomology theory but also for modular representation theory of finite groups. Under some additional conditions the module L defines the transfer map L:HH^* (B)→ HH^* (C) which induce the inclusion map l:H^* (G,B)→ H^* (H,C) through embeddings of H^* (G, B) into HH^* (B) and of H^* (H,C) into HH^* (c). It is very interesting from a view point of modular representation theory to determine the blocks of kH in which the Green correspondent V of an indecomposable module U lying in the block B lies. We showed that, using the module L above that under some condition the module V lies in the Brauer correspondent C and when H^* (G,B)⊆ H^* (H,C) the block varieties of the modules coincides in the sense that V _(G,B)(U)= l^* V _(H,C)(V).
在有限群的块理想的上同调理论中,有许多重要的问题没有得到解决。设G是有限群,k是除G阶的素特征的代数闭域。设B是kG的块理想,D是亏群.设P是D的一个子群,H是G的一个包含DC _G(D)和NG(P)的子群.设kH的块理想C与块B具有Brauer对应关系,D也是C的亏群。研究块上同调H^*(G,B)和H^*(H,C)之间的关系是非常重要的。例如,当H^*(G,B)H^*(H,C)成立时,这个包含映射应该通过块B和C的Hochshild上同调环之间的转移映射来理解。我们证明了C到G x H的绿色对应的(B,C)-双模L具有许多优良的性质,这些性质不仅对上同调理论的应用,而且对有限群的模表示理论的应用都是有用的.在某些附加条件下,模L定义了转移映射L:HH^*(B)→ HH^*(C),通过H^*(G,B)嵌入HH^*(B)和H^*(H,C)嵌入HH^*(c),导出包含映射1:H^*(G,B)→ H^*(H,C).从模表示论的观点来看,确定kH中位于块B中的不可分解模U的绿色对应V所在的块是非常有趣的。利用上述模L,我们证明了在一定条件下模V位于Brauer对应C中,当H^*(G,B)<$H^*(H,C)时,模的块簇在V _(G,B)(U)= l^* V _(H,C)(V)的意义下重合.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the transfer map for the Hochschild cohomology of Frobenius algebras
关于 Frobenius 代数的 Hochschild 上同调的传递图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ktsunori;Sanada
  • 通讯作者:
    Sanada
Brauer correspondence and Green correspondence
布劳尔通信和格林通信
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki;Sasaki
  • 通讯作者:
    Sasaki
Source modules and cohomology algebras of block ideals
块理想的源模和上同调代数
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki;Sasaki
  • 通讯作者:
    Sasaki
Cohomology Theory of Finite Groups
有限群上同调理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki;Sasaki
  • 通讯作者:
    Sasaki
Cohomology Theory of Finite Groups and Related Topics
有限群上同调理论及相关主题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsunori;Sanada
  • 通讯作者:
    Sanada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASAKI Hiroki其他文献

SASAKI Hiroki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASAKI Hiroki', 18)}}的其他基金

Development of vector specific to diffuse-type gastric cancer cells for peritoneal metastasis control
开发用于控制腹膜转移的弥漫型胃癌细胞特异性载体
  • 批准号:
    23501322
  • 财政年份:
    2011
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohomology theory of finite groups
有限群上同调理论
  • 批准号:
    22540013
  • 财政年份:
    2010
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohomology theory of finite groups
有限群上同调理论
  • 批准号:
    11640033
  • 财政年份:
    1999
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohmology theory of finite groups
有限群的余弦学理论
  • 批准号:
    09640046
  • 财政年份:
    1997
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了