Cohmology theory of finite groups
有限群的余弦学理论
基本信息
- 批准号:09640046
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We proved some fundamental theorems which are useful to calculation of cohomology algebras of finite groups. Namely we showed a fact on vertices of Carlson modules, relations of projective covers relative to modules and Green correspondence, relations of Carlson modules and Green correspondence, and a construction of system of parameters from a productive class when p-rank is two, where p is a prime number.We constructed a module which appears in investigation of cohomology algebra of finite group G with Sylow p-subgroup P such that (0) P has rank two (1) the center of P is cyclic (2) the centralizers of all elementary abelian subgroups of rank two are abelian and Sylow subgroups in the centralizers in G.Thereby the cohomology algebras of these finite groups can be investigated in a uniform way.As applications, first we calculated the mod 2 cohomology algebras of finite groups with wreathed Sylow 2-subgroups. Second we studied mod p cohomology algebras of finite groups with extraspecial Sylow p-subgroups of order p^3 and exponent p ; we constructed a general framework for the investigation. As an example we calculated the cohomology algebra of the general linear group GL(3, F_p), p > 3. Among such finite groups, the groups whose mod p cohomology algebras have been known are only Mathieu group M_<12> and GL(3, F_3) (these two finite groups have isomorphic cohomology algebras). We would be able to calculate cohomology algebras of sporadic finite simple groups with the same kind of Sylow p-subgroups.
证明了一些对有限群上同调代数计算有用的基本定理。即证明了关于Carlson模的顶点的一个事实,关于模的投射覆盖与绿色对应的关系,Carlson模与绿色对应的关系,以及当p秩为2时,从一个生产类构造参数系,其中p是素数.我们构造了一个模,它出现在研究有限群G的上同调代数中,且Sylow p-子群P使得(0)(2)所有秩为2的初等交换子群的中心化子都是G的中心化子中的交换子群和Sylow子群,从而可以统一地研究这类有限群的上同调代数,作为应用,我们首先计算了Sylow 2-子群带圈的有限群的模2上同调代数。其次,我们研究了具有p^3阶和指数为p的超特殊Sylow p-子群的有限群的模p上同调代数,并为这一研究建立了一个一般框架。作为例子,我们计算了一般线性群GL(3,F_p),p > 3的上同调代数.在这类有限群中,已知模p上同调代数的群只有Mathieu群M_(3)<12>和GL(3,F_3)(这两个有限群具有同构的上同调代数)。我们将能够计算具有相同类型的Sylow p-子群的零星有限单群的上同调代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SASAKI Hiroki其他文献
SASAKI Hiroki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SASAKI Hiroki', 18)}}的其他基金
Development of vector specific to diffuse-type gastric cancer cells for peritoneal metastasis control
开发用于控制腹膜转移的弥漫型胃癌细胞特异性载体
- 批准号:
23501322 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology theory of finite groups
有限群上同调理论
- 批准号:
22540013 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology Theory of Finite Groups
有限群上同调理论
- 批准号:
17540032 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology theory of finite groups
有限群上同调理论
- 批准号:
11640033 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
- 批准号:
21K03154 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
- 批准号:
1903754 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Applying amalgams to representation theory and cohomology
将汞齐应用于表示论和上同调
- 批准号:
1935781 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
- 批准号:
16K05054 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying space from the view point of representation theory
表示论角度的有限群上同调与空间分类同伦论
- 批准号:
24540007 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
- 批准号:
41981-2007 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
- 批准号:
1068783 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant