Construction of supersymmetric field theories by Ichimatsu-patterned lattice and application to nonperturbative renormalization group
一松型晶格构建超对称场论及其在非微扰重正化群中的应用
基本信息
- 批准号:17540242
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to construct regularized field theories in order to understand a unified (supersymmetric) mode of fundamental particle physics and to obtain a new idea on symmetry realized in regularized field theories.Since our fundamental particle physics is dominated by “gauge principle", its regularized version must be also gauged. The lattice gauge theory is a most suitable approach but the usual cubic lattice is less symmetry than our world.An Ichimatsu-patterned lattice has a substructure inside the normal cubic lattice. It is characteristic on account of fermionic degrees of freedom. We have made it clear that fermi fields on a Ichimatsu-patterned lattice are described by SO(2D) not SO(D) where D is space-time dimension. This surprising fact leads us to understand a doubling phenomena that fermionic degrees are 2^<(2D)/2> not 2^<D/2> in a unit lattice. Supersymmetric theories have a balance between bosonic and fermionic degree of freedom, and the counterpart for gauge freedom remains as an open problem.Why is the realization of supersymmetry difficult unlike gauge symmetry? One of reasons is the path integral measure of fermi fields. The simplest case is a 0-dimensional case and we have studied the global anomaly under the existence of Majorana fermions. The consequence is that the consistent theory enforces us even number of Majorana fermions in the theory such as Witten's anomaly. On the other hand, how can we set a Majorana fermion on lattice? According to an approach of Luescher for a chiral symmetry, we have tried a Majorana condition. To our regret, the result is not satisfied with chiral Yukawa couplings. Therefore, we need to get systematical approach of symmetry in regularized filed theories. The quantum master equation can describe the realization necessarily and sufficiently. This approach can apply to a system with external gravitational fields.
本项目的目的是为了理解基本粒子物理的统一(超对称)模式,并获得在正则化场论中实现的关于对称性的新想法,而构造正则化场论。由于我们的基本粒子物理是由“规范原理”支配的,因此它的正则化版本也必须被规范。格点规范理论是一种最合适的方法,但通常的立方格点的对称性不如我们的世界,一松格点在立方格点内部有一个子结构。这是费米子自由度的特征。我们已经清楚地表明,一松格点上的费米场是用SO(2D)描述的,而不是SO(D),其中D是时空维。这一令人惊讶的事实使我们理解了一种加倍现象,即在单位晶格中,费米子度是2^<(2D)/2>而不是2^<D/2>。超对称理论在玻色子自由度和费米子自由度之间取得了平衡,而规范自由度的对应物仍然是一个悬而未决的问题。为什么超对称的实现比规范对称困难?原因之一是费米场的路径积分测度。最简单的情形是0维情形,我们研究了Majorana费米子存在下的整体反常。结果是自洽理论强制我们在维滕反常等理论中有偶数个马约拉纳费米子。另一方面,我们如何在格点上设置一个马约拉纳费米子?根据Luescher关于手征对称性的方法,我们尝试了Majorana条件。遗憾的是,对于手征Yukawa耦合,结果并不令人满意。因此,我们需要对正则化场论中的对称性进行系统的研究。量子主方程可以充分、必要地描述这种实现。这种方法可以应用于具有外部引力场的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mass splitting of staggered fermion and SO (2D) Clifford algebra
交错费米子和 SO (2D) Clifford 代数的质量分裂
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Otobe;M.Yamagiwa;J;-I.Iwata;K.Yabana;T.Nakatsukasa;G.Bertsch;Morio Hatakeyama
- 通讯作者:Morio Hatakeyama
Overlap fermion in external gravity
外部重力下的重叠费米子
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:寺澤敏夫;ほか;Hiroto So
- 通讯作者:Hiroto So
On Maiorana fermions on the lattice
论晶格上的 Maiorana 费米子
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.Otobe;et. al.;Jan M. Pawlowski
- 通讯作者:Jan M. Pawlowski
Zero-dimensional analogue of the global gauge anomaly
全局规范异常的零维模拟
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.So;H.Suzuki
- 通讯作者:H.Suzuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SO Hiroto其他文献
SO Hiroto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SO Hiroto', 18)}}的其他基金
Realization of lattice supersymmetry with over degree of freedom
超自由度晶格超对称的实现
- 批准号:
20540274 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supersymmetry by lattice fermions near the continuum limit
接近连续极限的晶格费米子的超对称性
- 批准号:
12640259 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
- 批准号:
EP/X026116/1 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
- 批准号:
23K12983 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
On SU(5) Grand Unified Models with Extra Symmetries and their Experimental Testability
具有额外对称性的SU(5)大统一模型及其实验可检验性
- 批准号:
22KJ1022 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Aspects of curved-space supersymmetry and of supersymmetric black holes.
弯曲空间超对称性和超对称黑洞的方面。
- 批准号:
2885396 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Studentship
Search for supersymmetry in events with missing ET and b-jets with ATLAS
使用 ATLAS 搜索缺少 ET 和 b 喷流的事件中的超对称性
- 批准号:
2665416 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Studentship
Mathematics and Supersymmetry
数学和超对称性
- 批准号:
563284-2021 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
University Undergraduate Student Research Awards
Exploring the effect of correlations on quantum speed limits in interacting cold atom systems
探索相互作用的冷原子系统中相关性对量子速度极限的影响
- 批准号:
21K13856 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual