Development of Reliability Evaluation System for Numerical Solutions by Introducing Stochastic Approach and Application to Complicated Fluid Dynamics Simulation

引入随机方法的数值解可靠性评估系统开发及其在复杂流体动力学模拟中的应用

基本信息

  • 批准号:
    18540118
  • 负责人:
  • 金额:
    $ 2.44万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

For the purpose of development of reliability evaluation system for numerical solutions, we tried to discuss how structure of numerical solutions of a stochastic difference equation changes by the insertion of errors with the random style from the viewpoints of probabilistic approaches. Errors in solving the nonlinear systems are inserted randomly and structure of solutions becomes very complicated We try to investigate the dependence of the structure of numerical solutions on insertion of random errors As a fundamental study, the stochastic differential equation based on the deterministic logistic differential equation and the Lorenz equations are considered. A new approach, sample mean dynamical system (SMDS), is proposed in order to analyze the dependence of the structure of numerical solutions of discretized dynamical system on insertion of random errors and the relation between the size of noise and characteristics of obtained numerical solutions is discussed.In addition, we appli … More ed them to the issues of real fluid calculation and the problem of traffic jam in order to analyze several factors which govern nonlinear phenomena. First, we tried to discuss the dependence of the structure of numerical solutions of incompressible fluid equations on insertion of random errors in solving simultaneous equations. Dependence of the averaged structure of numerical solutions of fluid simulations on forcibly added random errors are discussed. Next, we give some theoretical considerations on the flux-free finite-element method for the generalized Stokes interface problem arising from the immiscible two-fluid flow problems. In the flux-free finite-element method, the flux constraint is posed as another Lagrange multiplier to keep the zero-flux on the interface. As a result, the mass of each fluid is expected to be preserved at every time step. We fast study the effect of discontinuous coefficients(viscosity and density)on the error of the standard finite element approximations very carefully. Then, the analysis is extended to the flux-free finite element method. As for the problem of traffic jam, the formation of the traffic congestion in two-lane traffic flow is studied. The two-lane macroscopic model using the optimal velocity model which has been introduced in the microscopic model is constructed on the basis of the one-lane model. We adopt different optimal velocity function to each lane and new rules of changing lanes are introduced. Numerical simulations are performed in order to investigate the characteristic phenomena of two-lane traffic flow In particular, we concentrate the discussion about the property of "Synchronized flow', one of the most characteristic phenomena of two-lane traffic flow Furthermore, the fundamental diagrams from the simulations are compared with those observed in a highway. Less
为了开发数值解的可靠性评价系统,从概率论的角度讨论了随机差分方程解的结构如何通过随机形式的误差插入而发生变化。作为基础研究,我们考虑了基于确定性Logistic方程的随机微分方程和基于Lorenz方程的随机微分方程解。提出了一种分析离散动力系统数值解结构对随机误差插入的依赖关系的新方法--样本平均动力系统,并讨论了噪声大小与数值解特征之间的关系。此外,我们还应用…将其更多地应用于实际流体计算和交通拥堵问题,以分析控制非线性现象的几个因素。首先,我们试图讨论不可压缩流体方程数值解的结构对求解联立方程时插入随机误差的依赖性。讨论了流体模拟数值解的平均结构对强制添加的随机误差的依赖性。接下来,我们给出了广义Stokes界面问题的无通量有限元方法的一些理论上的考虑。在无通量有限元方法中,通量约束被假定为另一个拉格朗日乘子,以保持界面上的零通量。因此,每一种流体的质量都有望在每个时间步长保持不变。我们非常仔细地快速研究了不连续系数(粘性系数和密度系数)对标准有限元近似误差的影响。然后,将分析推广到无通量有限元方法。对于交通拥堵问题,研究了双车道交通流中交通拥堵的形成。微观模型中引入的最优速度模型是在单车道模型的基础上建立的双车道宏观模型。对每条车道采用不同的最优速度函数,并引入了新的换道规则。为了研究双车道交通流的特征现象,我们进行了数值模拟,重点讨论了双车道交通流的特征之一--“同步流”的性质,并将模拟得到的基本图形与在高速公路上观察到的基本图形进行了比较

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Analogy of Effect of Random Errors to Several Stabilizing Terms in Flow Simulations
流动模拟中随机误差对几个稳定项影响的类比
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Tezuka;A.Papageorgiou;S.Tezuka;K. Ohmori;S. Tezuka;畑上到;S.Tezuka;I. Hataue
  • 通讯作者:
    I. Hataue
Analysis by Macroscopic Model Using Optimal Velocity Model in Two-lane Traffic Flow.
基于两车道交通流最优速度模型的宏观模型分析。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kishimoto;K. Komatsu;I. Hataue and S. Suzuki
  • 通讯作者:
    I. Hataue and S. Suzuki
On an Optimal Stopping Problem of Time Inhomogeneous Diffusion Processes
时间非均匀扩散过程的最优停止问题
2車線交通流におけるOV関数を用いたマクロモデルによる解析
使用 OV 函数的宏观模型分析两车道交通流
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    畑上到;鈴木修司
  • 通讯作者:
    鈴木修司
Flux-free finite element method with Lagrange multipliers for two-fluid flows
双流体流动的拉格朗日乘子无通量有限元法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HATAUE Itaru其他文献

HATAUE Itaru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HATAUE Itaru', 18)}}的其他基金

Analysis of Dynamical Structure by Considering the Randomness of Insertion of Errors and Development for Numerical Analysis on Conservative System
考虑误差插入随机性的动力结构分析及保守系统数值分析的发展
  • 批准号:
    23540129
  • 财政年份:
    2011
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical research for dependence of structure of dynamical system on insertion of random errors
动力系统结构对随机误差插入依赖性的数学研究
  • 批准号:
    20540112
  • 财政年份:
    2008
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Improvement of Numerical Simulation Including Iteration Processes for Nonlinear Evolution Equations
数值模拟精度的提高,包括非线性演化方程的迭代过程
  • 批准号:
    14540129
  • 财政年份:
    2002
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the treatment of Numerical Calculations Including Considerable Errors for Construction of Proper Mathematical Discrete models
含较大误差数值计算的处理方法以构建适当的数学离散模型
  • 批准号:
    12640132
  • 财政年份:
    2000
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the Structure of Numerical Solution of DE by Nonlinear Dynamics Approaches
非线性动力学方法分析DE数值解的结构
  • 批准号:
    06650078
  • 财政年份:
    1994
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了