Blind source separation using time-frequency information obtained from wavelet analysis
利用小波分析获得的时频信息进行盲源分离
基本信息
- 批准号:18540177
- 负责人:
- 金额:$ 2.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The cocktail party effect is a challenging problem in auditory perception, which deals with the specialized human listening ability to focus one's listening attention on a single talker among a cacophony of conversations and background noise. Our interest is how to build a machine to solve the cocktail party problem in a satisfactory manner. This problem is called blind source separation. The traditional way to solve this problem is an independent component analysis. We have proposed blind source separation methods based on time-frequency information obtained from the continuous wavelet transform. There are three types of blind source separation problems, which are called spatial mixture problem, temporal mixture problem and spatio-temporal mixture problem, respectively.This research project dealt with the spatial mixture problem and the simplest type of the spatio-temporal mixture problem using wavelet analysis. Our methods have the following three merits.1. The number of sources is estimated firstly.2. Using the number of sources, the other parameters are estimated with high accuracy.3. The errors between estimated sources and real sources are small enough.We have checked these merits according to numerical simulations. Moreover, in the case of spatial mixture problem, using more than two wavelet transforms, we can estimate model parameters in a noisy environment. In the case of the simplest type of the spatio-temporal mixture problem, the source location problem using time difference of arrival measurements is considered.
鸡尾酒会效应是听觉感知中的一个具有挑战性的问题,它涉及人类在嘈杂的谈话和背景噪声中将听觉注意力集中在单个说话者身上的特殊听觉能力。我们的兴趣是如何建立一个机器,以令人满意的方式解决鸡尾酒会问题。这个问题称为盲源分离。解决这一问题的传统方法是独立分量分析。我们提出了基于连续小波变换获得的时频信息的盲源分离方法。盲源分离问题分为空间混合问题、时间混合问题和时空混合问题,本课题利用小波分析方法分别研究了空间混合问题和最简单的时空混合问题。我们的方法有以下三个优点。1.首先估计了源的数量。利用源的个数,对其他参数进行了高精度的估计.估计源与真实的源之间的误差足够小,我们通过数值模拟验证了这些优点。此外,在空间混合问题的情况下,使用两个以上的小波变换,我们可以估计模型参数在噪声环境中。在最简单类型的时空混合问题的情况下,考虑使用到达时间差测量的源定位问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WAVELETの基礎理論とプログラミング
WAVELET基本理论与编程
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Ryuichi;Ashino;芦野隆一;守本晃;芦野隆一;芦野隆一;守本晃;芦野隆一
- 通讯作者:芦野隆一
時間周波数解析によるブラインド信号源分離のアルゴリズムと具体例
利用时频分析进行盲信号源分离的算法和具体实例
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J. Sugie;K. Matsumura;守本 晃
- 通讯作者:守本 晃
Blind source separation using time-frequency information matrix given by several wavelet transforms
利用多个小波变换给出的时频信息矩阵进行盲源分离
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:R. Ashino;K. Fujita;T. Mandai;A. Morimoto and K. Nishihara
- 通讯作者:A. Morimoto and K. Nishihara
スケールと周波数の関係について
关于尺度和频率的关系
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ryuichi;Ashino;芦野隆一;守本晃;芦野隆一;芦野隆一;守本晃;芦野隆一;萬代武史;芦野隆一;Ryuichi Ashino;萬代武史
- 通讯作者:萬代武史
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORIMOTO Akira其他文献
MORIMOTO Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORIMOTO Akira', 18)}}的其他基金
Source separation using N-tree discrete wavelet transform and sparse representation
使用 N 树离散小波变换和稀疏表示进行源分离
- 批准号:
26400199 - 财政年份:2014
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solving an image separation problem using space-scale analysis by wavelets
使用小波空间尺度分析解决图像分离问题
- 批准号:
23540135 - 财政年份:2011
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the pathogenesis of Langerhans cell histiocytosis from the point of bone immunology
从骨免疫学角度阐明朗格汉斯细胞组织细胞增多症的发病机制
- 批准号:
22591167 - 财政年份:2010
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An application of time-frequency analysis using wavelet to blind source separation problem
小波时频分析在盲源分离问题中的应用
- 批准号:
20540168 - 财政年份:2008
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Early diagnosis of disseminated adenovirus infection associated with hematopoietic stem cell transplantation by quantitative PCR
定量PCR早期诊断造血干细胞移植相关播散性腺病毒感染
- 批准号:
15591123 - 财政年份:2003
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microlocal filtering with wavelet frames multiresolution analysis
使用小波帧多分辨率分析的微局部滤波
- 批准号:
15540170 - 财政年份:2003
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cell biological analysis of EB virus in EBV associated peripheral T cell lymphoma
EB病毒在EB病毒相关外周T细胞淋巴瘤中的细胞生物学分析
- 批准号:
11670778 - 财政年份:1999
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 2.34万 - 项目类别:
Collaborative R&D
NSF Convergence Accelerator Track K: Advancing equitable and circular water solutions through source separation
NSF 融合加速器轨道 K:通过源头分离推进公平和循环的水解决方案
- 批准号:
2344230 - 财政年份:2024
- 资助金额:
$ 2.34万 - 项目类别:
Standard Grant
A blind source separation approach for deconvolution of bulk transcriptional data leads to early detection of ATF cell-states in complex bacterial populations, in vitro and in vivo
用于批量转录数据去卷积的盲源分离方法可以在体外和体内早期检测复杂细菌群体中的 ATF 细胞状态
- 批准号:
10703357 - 财政年份:2022
- 资助金额:
$ 2.34万 - 项目类别:
Mathematical Deepening of Audio Source Separation Based on Independence and Amplitude/Phase Modeling and Development of Multimodal Hearing-Aid system
基于独立性和幅度/相位建模的音频源分离的数学深化及多模助听系统的开发
- 批准号:
22H03652 - 财政年份:2022
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unification of Deep Learning and Generalized Mathematical Model for Independence-Based Audio Source Separation
深度学习与广义数学模型的统一用于基于独立的音频源分离
- 批准号:
19K20306 - 财政年份:2019
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of sound source separation method focusing on the singular point in spatio-temporal spectrum
时空谱奇异点声源分离方法研究进展
- 批准号:
19K04408 - 财政年份:2019
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Signal processing techniques for blind source separation
盲源分离的信号处理技术
- 批准号:
2282618 - 财政年份:2019
- 资助金额:
$ 2.34万 - 项目类别:
Studentship
Unsupervised neural source separation for crowded environments based on deep Bayesian learning
基于深度贝叶斯学习的拥挤环境无监督神经源分离
- 批准号:
19K21553 - 财政年份:2018
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Perceptually Motivated Advanced Bandwidth Extension Method in Multichannel Blind Source Separation
多通道盲源分离中感知驱动的高级带宽扩展方法
- 批准号:
489818-2016 - 财政年份:2018
- 资助金额:
$ 2.34万 - 项目类别:
Postgraduate Scholarships - Doctoral
Extended theories of audio source separation based on statistical independence and various mathematical structures
基于统计独立性和各种数学结构的音频源分离扩展理论
- 批准号:
17H06572 - 财政年份:2017
- 资助金额:
$ 2.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




