On the spectrum of the one-dimensional Schitdinger operators with periodic point -interactions

具有周期性点相互作用的一维席丁格算子的谱

基本信息

  • 批准号:
    18540190
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

In this project I analyzed the spectrum of the Schrodinger operator with periodicδ'-interaction of the formH=-d^2/dx^<2+>Σ (_1∈z) (βδ' (x-κ-2π1) 十γδ' (x-2π1) ) in L^2 RHere, κ∈ (0,2π) and β,γ∈R-{0} are parameters, and δ' is the derivative of the Dirac delta function supported at the origin. By the periodicity of the potential of H and the Floquet-Bloch theory, the spectrum of H, denoted by σ (H), has the band structure. Let G stand for the jth gap of σ (H). We put -2τ=2π-κandκ_0 =τ/κ. The main result of this research gives a relationship between the asymptotic behavior of the length of and the number-theoretical properties of the parameter κ_0. In order to see that briefly, we introduce a number-theoretical object. Suppose that κ_0 is irrational. Let M (κ_0) stand for the Markov constant of κ_0 :M (κ_0) =SuP{m>0 ; there exist infinitely many pairs (q,p)∈Z×N such that q|qκ_0-p|<1/ml.This constant represents the approximability of κ_0 by rational numbers. The following implication illustrates the aforementioned relationship.Theorem. Ifβ+γ=0,then lim inf (_j→∞)|G_1|=2π^2 (κτM (κ_0))^<-1>.
In this project I analyzed the spectrum of the Schrodinger operator with periodicδ'-interaction of the FormH = d ^ 2 / dx ^ 2 + > < Σ (_1 ∈ z) (beta delta '(x - 2 PI kappa - predominate 1) ten gamma delta' (1) x - 2 PI) in L ^ 2 RHere, kappa ∈ predominate PI (0, 2) and beta, gamma ∈ R - {0} are the parameters, and δ 'is the derivative of the Dirac delta function supported at the origin. By the periodicity of the potential of H and the Floquet Bloch theory, the spectrum of H, denoted by σ (H) has the band structure. Let G stand for the jth gap of σ (H). We put -2τ=2π-κandκ_0 =τ/κ. The main result of this research gives a relationship between the asymptotic behavior of the length of and the number-theoretical properties of the parameter κ _0.In order to see that briefly we introduce a number-theoretical object. Suppose that κ_0 is irrational. Let M (κ_0) stand for the Markov constant of κ_0 :M (κ_0) =SuP{m>0; there exist infinitely many pairs (q,p)∈Z×N such that q: qκ_0-p: <1/ml.This constant represents the approximability of κ_0 by rational numbers. The following implication illustrates the aforementioned relationship.Theorem. Ifβ+γ=0,then lim inf (_j→∞) : G_1 =2π^2 (κτM (κ_0))^<-1>.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral gaps of the Schrodinger operators with periodic δ,-interactions and Diophantine approximations
具有周期性 δ,-相互作用和丢番图近似的薛定谔算子的谱间隙
Dirac operators with periodic σ -interactions -spectral gaps and inhomogeneous Diophantine approximation
具有周期性 σ 相互作用谱间隙和非齐次丢番图近似的狄拉克算子
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazushi;Yoshitomi
  • 通讯作者:
    Yoshitomi
Spectral gaps of the SchrOdinger operators with periodic σ'-interactions and Diophantine approximations
具有周期性 σ 相互作用和丢番图近似的薛定谔算子的谱间隙
Periodic point interactions and Diophantine approximation
周期性点相互作用和丢番图近似
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazushi;Yoshitomi
  • 通讯作者:
    Yoshitomi
Spectral gaps of the Schrodinger operators with periodic δ-interactions and Diophantine approximations
具有周期性 δ 相互作用和丢番图近似的薛定谔算子的谱间隙
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHITOMI Kazushi其他文献

YOSHITOMI Kazushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHITOMI Kazushi', 18)}}的其他基金

Inverse scattering problems for singular rank-one perturbations of a selfadjoint operator
自伴随算子的奇异一阶扰动的逆散射问题
  • 批准号:
    23540219
  • 财政年份:
    2011
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral Gaps of the Dirac Operators with Periodic Point Interactions
具有周期性点相互作用的狄拉克算子的谱间隙
  • 批准号:
    20540182
  • 财政年份:
    2008
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Exciton-polariton condensates in acoustic periodic potentials.
激子-极化子在声周期势中凝聚。
  • 批准号:
    221587993
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grants
Nonlinear matter wave optics: Experiments on nonlinear quantum dynamics in double-well and periodic potentials
非线性物质波光学:双阱和周期势中的非线性量子动力学实验
  • 批准号:
    5454401
  • 财政年份:
    2005
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Priority Programmes
Mathematical Sciences: Bifurcation and Renormalization GroupStudies of Quasi-Periodic Potentials and Maps
数学科学:准周期势和映射的分岔和重正化群研究
  • 批准号:
    8313408
  • 财政年份:
    1984
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了