On the spectrum of the one-dimensional Schitdinger operators with periodic point -interactions
具有周期性点相互作用的一维席丁格算子的谱
基本信息
- 批准号:18540190
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project I analyzed the spectrum of the Schrodinger operator with periodicδ'-interaction of the formH=-d^2/dx^<2+>Σ (_1∈z) (βδ' (x-κ-2π1) 十γδ' (x-2π1) ) in L^2 RHere, κ∈ (0,2π) and β,γ∈R-{0} are parameters, and δ' is the derivative of the Dirac delta function supported at the origin. By the periodicity of the potential of H and the Floquet-Bloch theory, the spectrum of H, denoted by σ (H), has the band structure. Let G stand for the jth gap of σ (H). We put -2τ=2π-κandκ_0 =τ/κ. The main result of this research gives a relationship between the asymptotic behavior of the length of and the number-theoretical properties of the parameter κ_0. In order to see that briefly, we introduce a number-theoretical object. Suppose that κ_0 is irrational. Let M (κ_0) stand for the Markov constant of κ_0 :M (κ_0) =SuP{m>0 ; there exist infinitely many pairs (q,p)∈Z×N such that q|qκ_0-p|<1/ml.This constant represents the approximability of κ_0 by rational numbers. The following implication illustrates the aforementioned relationship.Theorem. Ifβ+γ=0,then lim inf (_j→∞)|G_1|=2π^2 (κτM (κ_0))^<-1>.
In this project I analyzed the spectrum of the Schrodinger operator with periodicδ'-interaction of the FormH = d ^ 2 / dx ^ 2 + > < Σ (_1 ∈ z) (beta delta '(x - 2 PI kappa - predominate 1) ten gamma delta' (1) x - 2 PI) in L ^ 2 RHere, kappa ∈ predominate PI (0, 2) and beta, gamma ∈ R - {0} are the parameters, and δ 'is the derivative of the Dirac delta function supported at the origin. By the periodicity of the potential of H and the Floquet Bloch theory, the spectrum of H, denoted by σ (H) has the band structure. Let G stand for the jth gap of σ (H). We put -2τ=2π-κandκ_0 =τ/κ. The main result of this research gives a relationship between the asymptotic behavior of the length of and the number-theoretical properties of the parameter κ _0.In order to see that briefly we introduce a number-theoretical object. Suppose that κ_0 is irrational. Let M (κ_0) stand for the Markov constant of κ_0 :M (κ_0) =SuP{m>0; there exist infinitely many pairs (q,p)∈Z×N such that q: qκ_0-p: <1/ml.This constant represents the approximability of κ_0 by rational numbers. The following implication illustrates the aforementioned relationship.Theorem. Ifβ+γ=0,then lim inf (_j→∞) : G_1 =2π^2 (κτM (κ_0))^<-1>.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral gaps of the Schrodinger operators with periodic δ,-interactions and Diophantine approximations
具有周期性 δ,-相互作用和丢番图近似的薛定谔算子的谱间隙
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kazushi;Yoshitomi;Kazushi Yoshitomi;KazushiYoshitom
- 通讯作者:KazushiYoshitom
Dirac operators with periodic σ -interactions -spectral gaps and inhomogeneous Diophantine approximation
具有周期性 σ 相互作用谱间隙和非齐次丢番图近似的狄拉克算子
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kazushi;Yoshitomi
- 通讯作者:Yoshitomi
Spectral gaps of the SchrOdinger operators with periodic σ'-interactions and Diophantine approximations
具有周期性 σ 相互作用和丢番图近似的薛定谔算子的谱间隙
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kazushi;Yoshitomi
- 通讯作者:Yoshitomi
Periodic point interactions and Diophantine approximation
周期性点相互作用和丢番图近似
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Kazushi;Yoshitomi
- 通讯作者:Yoshitomi
Spectral gaps of the Schrodinger operators with periodic δ-interactions and Diophantine approximations
具有周期性 δ 相互作用和丢番图近似的薛定谔算子的谱间隙
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Ryuichi;Ashino;Akira Morimoto;Akira Morimoto;芦野隆一;Kazushi Yoshitomi
- 通讯作者:Kazushi Yoshitomi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHITOMI Kazushi其他文献
YOSHITOMI Kazushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHITOMI Kazushi', 18)}}的其他基金
Inverse scattering problems for singular rank-one perturbations of a selfadjoint operator
自伴随算子的奇异一阶扰动的逆散射问题
- 批准号:
23540219 - 财政年份:2011
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral Gaps of the Dirac Operators with Periodic Point Interactions
具有周期性点相互作用的狄拉克算子的谱间隙
- 批准号:
20540182 - 财政年份:2008
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Exciton-polariton condensates in acoustic periodic potentials.
激子-极化子在声周期势中凝聚。
- 批准号:
221587993 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Research Grants
Nonlinear matter wave optics: Experiments on nonlinear quantum dynamics in double-well and periodic potentials
非线性物质波光学:双阱和周期势中的非线性量子动力学实验
- 批准号:
5454401 - 财政年份:2005
- 资助金额:
$ 2.48万 - 项目类别:
Priority Programmes
Mathematical Sciences: Bifurcation and Renormalization GroupStudies of Quasi-Periodic Potentials and Maps
数学科学:准周期势和映射的分岔和重正化群研究
- 批准号:
8313408 - 财政年份:1984
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant