Motion Control of Hyper Redundant Robots with Learning Control Scheme Based on Linear Combination of Error History

基于误差历史线性组合的学习控制方案的超冗余机器人运动控制

基本信息

  • 批准号:
    18560243
  • 负责人:
  • 金额:
    $ 2.45万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Aiming to establish effective motion control scheme for hyper redundant robot by learning control based on linear combination of error history, new methods to set suitable subtasks and to obtain suitable initial configuration of the robots, the optimum motion control based on dexterity of the robots, and flexibility control of the robots with elastic elements are discussed. The obtained results are summarized as follows :(1)For hyper redundant planar serial manipulators, new methods to set subtask so as to pass obstacles away or assist main task were proposed and formulated.(2) A new 'Backward learning scheme', in which a converged configuration obtained with forward learning was set as initial configuration and the learning processes were repeated, was proposed so as to obtain suitable initial configuration.(3)Quantitative indices to evaluate assistability for main task and movability of links were derived from column vector of Jacobian matrices of joints. By setting the indices as objective functions, the joint inputs were optimized with gradient projection method and learning control.(4) new flexibility control method to specify both of output displacement and stiffness distribution of a closed-loop redundant manipulator with elastic passive joints was formulated and was experimentally examined. A prototype can then manipulate soft/hard objects while controlling output flexibility.It was thus revealed that the learning control based on linear combination of error history could realize motion and output force control while utilizing redundancy.
针对基于误差历史线性组合的学习控制方法建立有效的超冗余度机器人运动控制方案,讨论了设置合适子任务和获得合适初始构型的新方法、基于机器人灵巧性的最优运动控制方法以及具有弹性元件的机器人柔性控制方法。结果表明:(1)针对超冗余度平面串联机械臂,提出并制定了设置子任务以避开障碍物或辅助主任务的新方法。(2)提出了一种新的“后向学习方案”,将前向学习得到的收敛构型作为初始构型,并重复学习过程,以获得合适的初始构型。(3)根据关节雅可比矩阵的列向量,导出了评价关节主任务辅助性和可动性的定量指标。以指标为目标函数,采用梯度投影法和学习控制对联合输入进行优化。(4)提出了一种新的柔性控制方法,以确定具有弹性被动关节的闭环冗余度机械臂的输出位移和刚度分布,并进行了实验验证。然后,原型可以在控制输出灵活性的同时操纵软/硬对象。结果表明,基于误差历史线性组合的学习控制可以在利用冗余的同时实现运动和输出力的控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
運動可能性の目標運動達成支援性に基づく超多自由度ロボットの器用さの評価と最適制御
基于运动可能性支持度实现目标运动的超多自由度机器人灵巧度评估与优化控制
Motion Control of Hyper Redundant Robots to Utilize Redundancy Based on Movability and Assistability
基于可移动性和可辅助性的超冗余机器人运动控制以利用冗余
Motion Control of Hyper Redundant Robots with Learning Control Based on Linear Combination of Error History and Acquisition of Initial Configuration with Backward Learning
基于误差历史线性组合和逆向学习获取初始配置的学习控制超冗余机器人运动控制
Redundancy Utilization of Hyper Redundant Robots on Movability and Assistability
超冗余机器人在可移动性和辅助性方面的冗余利用
「研究成果報告書概要(和文)」より
摘自《研究结果报告摘要(日文)》
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kawauchi;et. al.;Nishimura et al.;Dezawa et al.;Yoshizawa et al.;星野 幹雄;星野 幹雄
  • 通讯作者:
    星野 幹雄
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IWATSUKI Nobuyuki其他文献

IWATSUKI Nobuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IWATSUKI Nobuyuki', 18)}}的其他基金

Development of Micro Cilium Actuators in Group
微纤毛执行器的成组开发
  • 批准号:
    16078206
  • 财政年份:
    2004
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Synthesis and Control of Hyper Redundant Network-Structure Robot with Elastic Elements
弹性元件超冗余网络结构机器人的合成与控制
  • 批准号:
    15560215
  • 财政年份:
    2003
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Laser Speckle Interferometer to Measure Two-dimensional In-plane Vibration in Real-time Based on Fourier Transform with Electronic Circuit
基于电子电路傅里叶变换实时测量二维面内振动的激光散斑干涉仪的研制
  • 批准号:
    13555063
  • 财政年份:
    2001
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Module Base Control of Network-structure Robots with Huge Degree-of-freedom
网络结构大自由度机器人的模块库控制
  • 批准号:
    12650245
  • 财政年份:
    2000
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Shape-varying Robots with a Network Structure with Huge Degree-of-freedom
大自由度网络结构变形机器人的研制
  • 批准号:
    09650288
  • 财政年份:
    1997
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Electrothermal iterative learning control and optimization of electric vehicle operation
电动汽车运行的电热迭代学习控制与优化
  • 批准号:
    23K03906
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven iterative learning control for continuous-time systems
连续时间系统的数据驱动迭代学习控制
  • 批准号:
    2891700
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Studentship
CAREER: Distributionally Robust Learning, Control, and Benefits Analysis of Information Sharing for Connected and Autonomous Vehicles
职业:互联和自动驾驶车辆信息共享的分布式鲁棒学习、控制和效益分析
  • 批准号:
    2047354
  • 财政年份:
    2021
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Continuing Grant
Leveraging a Predictive Knowledge Base for Reinforcement Learning Control
利用预测知识库进行强化学习控制
  • 批准号:
    535280-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Towards a Theory of Robust Learning & Control for Safety-Critical Autonomous Systems
职业生涯:迈向稳健学习理论
  • 批准号:
    2045834
  • 财政年份:
    2021
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Continuing Grant
CAREER: Toward Artificial General Intelligence for Complex Adaptive Systems: A Natural Concurrent “Learning-in-Learning” Control Paradigm
职业:走向复杂自适应系统的通用人工智能:自然并发“学习中学习”控制范式
  • 批准号:
    2047064
  • 财政年份:
    2021
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Continuing Grant
Connecting System Identification and Machine Learning for Achieving Both Performance and Generalization Capability in Iterative Learning Control
连接系统辨识和机器学习,实现迭代学习控制的性能和泛化能力
  • 批准号:
    21K14179
  • 财政年份:
    2021
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CPS: Small: Data-Driven Reinforcement Learning Control of Large CPS Networks using Multi-Stage Hierarchical Decompositions
CPS:小型:使用多级分层分解对大型 CPS 网络进行数据驱动的强化学习控制
  • 批准号:
    1931932
  • 财政年份:
    2020
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Standard Grant
Leveraging a Predictive Knowledge Base for Reinforcement Learning Control
利用预测知识库进行强化学习控制
  • 批准号:
    535280-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Iterative Learning Control with Human-in-the-loop
人机交互的迭代学习控制
  • 批准号:
    2482288
  • 财政年份:
    2020
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了