Generation of 3D object and environment models with an imaging sonar

使用成像声纳生成 3D 对象和环境模型

基本信息

项目摘要

When employing underwater robots, 3D object and environment information are useful mission results and they also form an important basis for machine intelligence and agency, i.e. the use of (semi-)autonomous systems. Various optical methods are already very successfully used for the generation of underwater 3D data. However, the necessary visibility conditions are hardly or even not at all given in many environments. For sonar as an alternative, the generation of 3D data is in contrast still a major scientific challenge. In this project, the generation of 3D information from the 2D data of an imaging sonar, also known as an acoustic camera, is explored. In contrast to what the name suggests, the projection function of this type of sonar is very different from that of an optical camera. The data is arranged on one of the two image axes by distance, rather than by angle as in the pinhole camera model. Multiple points that can be placed very differently in the scene can hence be projected onto one point in the image. Thus, in 3D environments or with objects, there is for example considerable distortion compared to what is expected according to human vision. As further drawbacks, these sonar images have quite low resolution and they are heavily affected by noise. The resulting challenges are addressed as follows. First, a reformulation of the well-known optical method of bundle adjustment for the special projective geometry of an imaging sonar is developed. In particular, the ambiguities that arise are represented and taken into account in the optimization. Furthermore, the additional fourth degree of freedom (scale) of spectral registration methods is used as an additional constraint. Second, new methods are explored that allow robust registration with four degrees of freedom (translation, rotation, scale) of very noisy 2D data. In particular, the use of these frequency-based methods as image features, i.e., for finding correspondences between points in sonar images, is also explored. The objective is to achieve a quality in the 3D data that goes far beyond the state of the art in research, thus laying the foundations that will allow our approach to be used in relevant scenarios. All developed methods are therefore also intensively evaluated in real systems in realistic environments.
当使用水下机器人时,3D对象和环境信息是有用的使命结果,并且它们也形成机器智能和代理的重要基础,即使用(半)自主系统。各种光学方法已经非常成功地用于生成水下3D数据。然而,在许多环境中,几乎没有或根本没有给出必要的可见性条件。对于声纳作为替代方案,3D数据的生成相比之下仍然是一个重大的科学挑战。在这个项目中,从成像声纳(也称为声学相机)的2D数据生成3D信息进行了探索。顾名思义,这种声纳的投影功能与光学相机有很大的不同。数据按距离排列在两个图像轴之一上,而不是像针孔相机模型那样按角度排列。因此,可以将在场景中放置非常不同的多个点投影到图像中的一个点上。因此,在3D环境中或对于对象,与根据人类视觉所预期的相比,存在例如相当大的失真。作为进一步的缺点,这些声纳图像具有相当低的分辨率,并且它们受到噪声的严重影响。现将由此产生的挑战处理如下。首先,著名的光束法平差的成像声纳的特殊投影几何的重新制定。特别是,在优化中会表示并考虑出现的模糊性。此外,光谱配准方法的附加第四自由度(尺度)被用作附加约束。其次,新的方法进行了探索,允许强大的注册与四个自由度(平移,旋转,缩放)非常嘈杂的2D数据。特别地,使用这些基于频率的方法作为图像特征,即,用于寻找声纳图像中点之间的对应关系,也进行了探索。我们的目标是实现3D数据的质量,远远超出研究领域的最新水平,从而为我们的方法在相关场景中使用奠定基础。因此,所有开发的方法也在现实环境中的真实的系统中进行了深入评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andreas Birk其他文献

Professor Dr. Andreas Birk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Andreas Birk', 18)}}的其他基金

Unconstrained Synthetic Aperture Sonar
无约束合成孔径声纳
  • 批准号:
    418971043
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Learning 3-Dimensional Maps of Unstructured Environments on a Mobile Robot.
在移动机器人上学习非结构化环境的 3 维地图。
  • 批准号:
    5441387
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
  • 批准号:
    10720137
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
From 2D to 3D: The importance of depth for neural processing of natural stimuli
从 2D 到 3D:深度对于自然刺激神经处理的重要性
  • 批准号:
    478809
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
3D Printer
3D打印机
  • 批准号:
    10412485
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
  • 批准号:
    2240733
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research and development of 3D object recognition and dynamic movement trajectory transmission for the visually impaired .
为视障人士研发3D物体识别及动态运动轨迹传输。
  • 批准号:
    22H03992
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deployment of LIDAR-Based 3D Object Detection on an Autonomous Vehicle
在自动驾驶车辆上部署基于 LIDAR 的 3D 物体检测
  • 批准号:
    562733-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Diagnosing the undiagnosable: studies of Alzheimer disease mimics and confounders via "neuropathometry" of dissection photos with 3D scanning
诊断无法诊断的疾病:通过 3D 扫描解剖照片的“神经病理学”研究阿尔茨海默病的模拟和混杂因素
  • 批准号:
    10323676
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Diagnosing the undiagnosable: studies of Alzheimer disease mimics and confounders via "neuropathometry" of dissection photos with 3D scanning
诊断无法诊断的疾病:通过 3D 扫描解剖照片的“神经病理学”研究阿尔茨海默病的模拟和混杂因素
  • 批准号:
    10533801
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Portable High Quality 3D facial and object scan and render product for advertising-tech industry
适用于广告技术行业的便携式高品质 3D 面部和物体扫描和渲染产品
  • 批准号:
    10010224
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Responsive Strategy and Planning
Passive system for sensing object motion in 3D
用于感知 3D 物体运动的被动系统
  • 批准号:
    20K04516
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了