Learning 3-Dimensional Maps of Unstructured Environments on a Mobile Robot.

在移动机器人上学习非结构化环境的 3 维地图。

基本信息

  • 批准号:
    5441387
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2005
  • 资助国家:
    德国
  • 起止时间:
    2004-12-31 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

The project deals with learning of a three dimensional representation of an unstructured indoor environment by an autonomous mobile robot. The general problem of mapping is a fundamental issue in robotics, as maps are crucial for the success of any non-trivial mission. In the past, significant efforts were devoted to build two dimensional maps like floorplans. These approaches simplify the problem, but they are well developed and they are sufficient for solving basic tasks. But mobile robots increasingly operate in three dimensions. This is due to significant advances in locomotion and the actual need to overcome for example slopes or stairs in any realistic environment. We propose an on-line learning algorithm, which creates a metric 3D representation encoded in the Virtual Reality Modeling Language (VRML) of an unstructured environment. The system is targeted for the real world, i.e., it has to cope with the unreliable and noisy navigation- and range-sensor data of a robot. The algorithm uses an evolutionary method where a VRML neighborhood model is extracted in realtime from a local 3D occupancy grid while the robot moves along. Inspired by previous successful work on realtime learning of 3D eye-hand coordination with a robot-arm, the evolutionary algorithm tries to generate VRML code that reproduce the vast amounts of sensor data. In doing so, we use a so-called neighborhood principle. Roughly speaking, the neighborhood principle uses a probabilistic estimation of the robots position in the world called the standpoint, which greatly reduces the complexity of learning steps. As demonstrator scenario, the system will be implemented on the IUB rescue robots.
该项目涉及由自主移动机器人学习非结构化室内环境的三维表示。绘制地图的一般问题是机器人技术中的一个基本问题,因为地图对于任何重要任务的成功都至关重要。在过去,人们花了大量的精力来绘制二维地图,比如平面图。这些方法简化了问题,但它们发展得很好,足以解决基本任务。但移动机器人越来越多地在三维空间中工作。这是由于运动方面的重大进步,以及在任何现实环境中克服斜坡或楼梯等实际需要。我们提出了一种在线学习算法,该算法以非结构化环境的虚拟现实建模语言(VRML)编码创建度量三维表示。该系统针对的是现实世界,也就是说,它必须处理机器人的导航和距离传感器数据的不可靠和噪声。该算法采用一种进化方法,在机器人移动时,从局部3D占用网格中实时提取VRML邻域模型。受先前成功的机器人手臂实时学习3D手眼协调工作的启发,进化算法试图生成VRML代码来复制大量的传感器数据。在这样做的过程中,我们使用了所谓的邻域原则。粗略地说,邻域原理使用了机器人在世界上的位置的概率估计,称为立场,这大大降低了学习步骤的复杂性。作为演示场景,该系统将在IUB救援机器人上实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andreas Birk其他文献

Professor Dr. Andreas Birk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Andreas Birk', 18)}}的其他基金

Unconstrained Synthetic Aperture Sonar
无约束合成孔径声纳
  • 批准号:
    418971043
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Generation of 3D object and environment models with an imaging sonar
使用成像声纳生成 3D 对象和环境模型
  • 批准号:
    535678995
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Three-dimensional maps of senescence in the human pancreas
人类胰腺衰老的三维图
  • 批准号:
    10552336
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Three-dimensional maps of senescence in the human pancreas
人类胰腺衰老的三维图
  • 批准号:
    10684887
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Dynamic Design of a Game Level Using Higher-Dimensional Emotional Maps Using Biological Information
使用生物信息的高维情感图进行游戏关卡的动态设计
  • 批准号:
    20K12516
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Learning High-Dimensional Non-Linear Maps Arising from Physical Phenomena via Symmetry and Structure-Preserving Deep Neural Networks
通过对称性和结构保持深度神经网络学习物理现象产生的高维非线性图
  • 批准号:
    2012292
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
PDE Boundary Control for Active Flutter Prevention Using Finite Dimensional Input-Output Maps
使用有限维输入输出图进行主动颤振预防的偏微分方程边界控制
  • 批准号:
    EP/R032548/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Three-dimensional spatial probability maps and the examination of the association between the sulci and cytoarchitectonic divisions of the mid-dorsolateral prefrontal cortex in the human brain
三维空间概率图以及人脑中背外侧前额叶皮层脑沟和细胞结构分区之间关联的检查
  • 批准号:
    529184-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of three-dimensional geomorphological classification maps based on bird's-eye views devised by Tomoya Iwozawa and Utilizations of those images at Natural History Museums.
根据岩泽智也设计的鸟瞰图开发三维地貌分类图,并在自然历史博物馆利用这些图像。
  • 批准号:
    17K01240
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了