Geometry of Moduli Spaces and its Application to Infinite Analysis
模空间几何及其在无限分析中的应用
基本信息
- 批准号:19340007
- 负责人:
- 金额:$ 11.65万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2007
- 资助国家:日本
- 起止时间:2007 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From conformal field theory with gauge symmetry constructed by Tsuchiya, Yamada and Ueno I and Joergen E. Andersen constructed modular functors so that we had topological filed theory for three manifolds. When the Lie algebra for gauge symmetry is sl(n, C) we proved that our topological field is isomorphic to the one constructed by Reshetikhin and Turaev by using GNS construction of representations of Hecke algebra. As a corollary to our proof we could also prove that conformal block bundles on the Teichmueller space of pointed Riemann surfaces of genus 0 carry unitary structure compatible with KZ connections.Ueno also constructed a family of curves over a field of characteristic p, which contain multiple fiber pD where D is any divisor appearing a degeneration of a family of curves of genus 2 and p is any prime number.
从Tsuchiya,Yamada和Ueno I和Joergen E. Andersen构建的量规对称性的保形场理论中,我们对三个流形的拓扑提交了拓扑函数。当仪表对称性的谎言代数为SL(N,C)时,我们证明了我们的拓扑领域是与Reshetikhin和Turaev构建的拓扑领域同构的,它使用GNS构造Hecke代数的表示。 As a corollary to our proof we could also prove that conformal block bundles on the Teichmueller space of pointed Riemann surfaces of genus 0 carry unitary structure compatible with KZ connections.Ueno also constructed a family of curves over a field of characteristic p, which contain multiple fiber pD where D is any divisor appearing a degeneration of a family of curves of genus 2 and p is any prime number.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loop spaces and conformal field theory
环空间和共形场论
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Andersen;J. E. & Ueno;K.;Hiraku Nakajima;J.E. Andersen & K. Ueno;上野健爾;Yuji Shimizu
- 通讯作者:Yuji Shimizu
Hecke algebra at root of unity and quantum invariants of three-manifolds
统一根的赫克代数和三流形的量子不变量
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Andersen;J. E. & Ueno;K.;Hiraku Nakajima;J.E. Andersen & K. Ueno;上野健爾
- 通讯作者:上野健爾
Fields Institute Monographs, 24.
菲尔兹研究所专着,24。
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Kato;F.;Fumiharu Kato;Tsuyoshi Kato;K. Ueno;Kenji Ueno;Kenji Ueno
- 通讯作者:Kenji Ueno
Abelian Conformal Field Theory and Determinant Bundles
阿贝尔共形场论和行列式束
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Andersen;J. E. & Ueno;K.
- 通讯作者:K.
Grassmann structure in the XXZ model. II. Cretion operators.
XXZ 模型中的 Grassmann 结构。
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Boos;H.;Jimbo;M.;Miwa;T.;Smirnov;F.;Takeyama;Y. Hidden
- 通讯作者:Y. Hidden
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UENO Kenji其他文献
UENO Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UENO Kenji', 18)}}的其他基金
Study on the transition metal complexes with unstable silicon and germanium ligands
不稳定硅、锗配体过渡金属配合物的研究
- 批准号:
15350030 - 财政年份:2003
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of integrable systems with infinite degrees of freedom and new development of moduli theory.
无限自由度可积系统的几何与模理论的新发展。
- 批准号:
14102001 - 财政年份:2002
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Integrable systems with infinite degrees of freedom
具有无限自由度的可积系统
- 批准号:
09304002 - 财政年份:1997
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Studies on moduli spaces from the view point of mathematical physics
从数学物理角度研究模空间
- 批准号:
07304003 - 财政年份:1995
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 11.65万 - 项目类别:
Research Grant
対称積共形場理論を通じたAdS/CFT対応の解明
通过对称积共形场理论阐明 AdS/CFT 对应关系
- 批准号:
24KJ1374 - 财政年份:2024
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
2次元共形場理論におけるスクリーニング作用素の複眼的探求
二维共形场论中筛选算子的复合探索
- 批准号:
24K06665 - 财政年份:2024
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
二次元共形場理論と幾何学的不変量
二维共形场论和几何不变量
- 批准号:
24K16911 - 财政年份:2024
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Research Activity Start-up