Geometry of integrable systems with infinite degrees of freedom and new development of moduli theory.
无限自由度可积系统的几何与模理论的新发展。
基本信息
- 批准号:14102001
- 负责人:
- 金额:$ 68.81万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (S)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From non-abelian conformal field theory (WSWN-model) and abelian conformal field Ueno and J.E. Andersen constructed modular functor and studied properties of the associated topological field theory. They also showed that S-matrices of non-abelian conformal field theory are determined by the genus 0 data. Moreover they showed that the Nielsen-Thurston classification of mapping class groups of 4-pointed spheres is determined by their quantum SU (n) representations. F. Kato and his collaborators have constructed the most general rigid geometry so that it can be applied to study moduli spaces by analytic method. S. Mochizuki has studied categorical aspect of moduli space of algebraic curves from different viewpoints. For example, he constructed theory of Frobenioids and that of etale theta functions, which give new direction of study of moduli spaces. Moreover, many interesting results on geometric and arithmetic properties of moduli spaces were obtained.For theory of integrable systems K. Takasaki and his collaborators found that moduli spaces play important roles in the soliton theory. Also interesting relationship between geometry of special algebraic curves and Painleve equations were found. Moreover several important properties of quantum cohomology and quantum K-theory of flag manifolds have been found.Our studies show that mathematical structure of moduli space is deeper than what we thought at the beginning and we need new mathematical tools for further investigations. Our results give a part of such tools and also show new directions to further investigations.
从非交换共形场论(WSWN模型)和交换共形场Ueno和J.E. Andersen构造了模函子并研究了其相关拓扑场论的性质。他们还证明了非交换共形场论的S-矩阵是由亏格0数据决定的。此外,他们还证明了四点球映射类群的Nielsen-Thurston分类是由它们的量子SU(n)表示决定的。F. Kato和他的合作者们构造了最一般的刚性几何,从而可以用解析方法来研究模空间。S. Mochizuki从不同的角度研究了代数曲线的模空间的范畴方面。例如,他建造的理论Frobenioids和的etale θ函数,这给新的方向研究模空间。此外,还得到了模空间的几何和算术性质的许多有趣结果。高崎和他的合作者发现模空间在孤子理论中起着重要的作用。我们发现了特殊代数曲线的几何与Painleve方程之间有趣的关系,并且发现了旗流形的量子上同调和量子K理论的几个重要性质,我们的研究表明模空间的数学结构比我们最初想象的要深刻,我们需要新的数学工具来进行进一步的研究。我们的结果给出了这样的工具的一部分,也显示了新的方向,进一步的调查。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The geometry of anabelioids.
anabeloids 的几何形状。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hiromi Mori;Soshu Kirihara;Yoshinari Miyamoto;S.Mochizuki
- 通讯作者:S.Mochizuki
Geometric construction of modular functors from conformal field theory.
从共形场论中模函子的几何构造。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:J.E.Andersen;K.Ueno
- 通讯作者:K.Ueno
Ueno, Kenji: "Algebraic geometry.3.Further study of schemes"AMS. 222 (2003)
上野健二:“代数几何。3.方案的进一步研究”AMS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Moriwaki, Atsushi: "Nef divisors in codimension one on the moduli space curves"Compositio Math.. 132,No.2. 191-228 (2002)
Moriwaki,Atsushi:“模空间曲线上余维一的 Nef 除数”Compositio Math.. 132,No.2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takasaki, K., others: "Hierarchy of (2+1)-dimensional nonlinear shrodinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras"Ann.Henri Poincare. 3,no.5. 817-845 (2002)
Takasaki, K. 等人:“(2 1) 维非线性 shrodinger 方程、自对偶 Yang-Mills 方程和环形李代数的层次结构”Ann.Henri Poincare。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UENO Kenji其他文献
UENO Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UENO Kenji', 18)}}的其他基金
Geometry of Moduli Spaces and its Application to Infinite Analysis
模空间几何及其在无限分析中的应用
- 批准号:
19340007 - 财政年份:2007
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the transition metal complexes with unstable silicon and germanium ligands
不稳定硅、锗配体过渡金属配合物的研究
- 批准号:
15350030 - 财政年份:2003
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrable systems with infinite degrees of freedom
具有无限自由度的可积系统
- 批准号:
09304002 - 财政年份:1997
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Studies on moduli spaces from the view point of mathematical physics
从数学物理角度研究模空间
- 批准号:
07304003 - 财政年份:1995
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
- 批准号:
EP/X020592/1 - 财政年份:2023
- 资助金额:
$ 68.81万 - 项目类别:
Research Grant
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 68.81万 - 项目类别:
Continuing Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
- 批准号:
22K13916 - 财政年份:2022
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 68.81万 - 项目类别:
Discovery Grants Program - Individual
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
使用超级黎曼曲面的黎曼曲面模空间上的复解析不变量
- 批准号:
21K03239 - 财政年份:2021
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 68.81万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 68.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




