Integrable systems with infinite degrees of freedom
具有无限自由度的可积系统
基本信息
- 批准号:09304002
- 负责人:
- 金额:$ 21.38万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A).
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the present research we studied mainly conformal filed theory and string theory related to geometry of moduli spaces. We obtained the following main results.1. Construction of modular functor :Taking the tensor product of non-abelian conformal field theory and a fractional power of abelian conformal field theory we constructed modularfunctor. This implies that we can construct new invariants of threefolds associated with complex simple Lie algebras.2. Reconstruction of abelian conformal field theory and study of relationship with degeneration of curves and conformal blocks :Using Heisenberg algebra and vertex operator algebra we reconstruct abelian conformal field theory. It is a similar construction of non-abelian conformal field theory. This clarifies relationship between degeneration of curves and abelian conformal blocks.3. Study of KZB equation :The differential equations describing projectively flat connection of conformal blocks over the moduli space of curves of genus greater than or equal to one is called KZB equation. In the present study we gave new simple description of KZB equation and studied its properties.4. Study of the moduli spaces of abelian surfaces and K3 surfaces :Katsura and van der Geer gave stratification of the moduli spaces of abelian surfaces and K3 surfaces using the Artin-Mazur formal groups. They gave explicit description of cycle classes of the loci corresponding to supersingular surfaces.5. The spaces of initial conditions of Painleve equations :Saito and his group gave new method of classification of Painleve equations by using the fact the spaces of initial conditions are rational surfaces.6. Study of superstring theory :Eguchi and his group studied Landau-Ginzburg models and found a new description of isolated singularities of type E.Saito and his group studied mirror symmetry of rational elliptic surfaces.
本文主要研究了模空间几何中的共形场理论和弦理论。我们得到了以下主要结果:模函子的构造:利用非阿贝尔共形场论的张量积与阿贝尔共形场论的分数次幂构造了模函子。这意味着我们可以构造与复简单李代数相关的新的三倍不变量。阿贝尔共形场论的重构及其与曲线和共形块退化关系的研究:利用Heisenberg代数和顶点算子代数重构了阿贝尔共形场论。它是非阿贝尔共形场论的一个类似构造。这阐明了曲线退化与阿贝尔共形块之间的关系。KZB方程的研究:描述保形块在大于等于1的曲线模空间上的投影平面连接的微分方程称为KZB方程。本文对KZB方程给出了新的简单描述,并对其性质进行了研究。阿贝尔曲面和K3曲面的模空间研究:Katsura和van der Geer利用Artin-Mazur形式群给出了阿贝尔曲面和K3曲面的模空间分层。他们给出了与超奇异曲面相对应的轨迹的环类的明确描述。5 . Painleve方程的初始条件空间:Saito等人利用Painleve方程的初始条件空间是有理曲面这一事实,给出了Painleve方程分类的新方法。超弦理论的研究:Eguchi和他的团队研究了Landau-Ginzburg模型,并发现了E.Saito和他的团队研究了有理椭圆表面的镜像对称性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Katsura,T.: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2・3. 259-290 (2000)
Katsura, T.:“关于 K3 表面模量的分层”J.Eur.Math.Soc.. 2・3 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakamura, Iku: "Hilbert schemes of G-orbits in dimension three. Kodaira's issue."Asian J.Math.. 4-1. 51-70 (2000)
Nakamura, Iku:“第三维 G 轨道的希尔伯特方案。小平问题。”亚洲 J.Math.. 4-1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
清水勇二: "Lifring infinitesimal Virasoro action"preprint.
Yuji Shimizu:“Lifring 无穷小维拉索罗动作”预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UENO Kenji其他文献
UENO Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UENO Kenji', 18)}}的其他基金
Geometry of Moduli Spaces and its Application to Infinite Analysis
模空间几何及其在无限分析中的应用
- 批准号:
19340007 - 财政年份:2007
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the transition metal complexes with unstable silicon and germanium ligands
不稳定硅、锗配体过渡金属配合物的研究
- 批准号:
15350030 - 财政年份:2003
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of integrable systems with infinite degrees of freedom and new development of moduli theory.
无限自由度可积系统的几何与模理论的新发展。
- 批准号:
14102001 - 财政年份:2002
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Studies on moduli spaces from the view point of mathematical physics
从数学物理角度研究模空间
- 批准号:
07304003 - 财政年份:1995
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 21.38万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 21.38万 - 项目类别:
Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
- 批准号:
EP/X020592/1 - 财政年份:2023
- 资助金额:
$ 21.38万 - 项目类别:
Research Grant
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 21.38万 - 项目类别:
Continuing Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
- 批准号:
22K13916 - 财政年份:2022
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 21.38万 - 项目类别:
Discovery Grants Program - Individual
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
使用超级黎曼曲面的黎曼曲面模空间上的复解析不变量
- 批准号:
21K03239 - 财政年份:2021
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 21.38万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 21.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




