Functional complexomics associated with maturation and activity-dependent plasticity of excitatory synapse
与兴奋性突触的成熟和活动依赖性可塑性相关的功能复杂组学
基本信息
- 批准号:537196039
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Processing and storage of information in the brain fundamentally rely on proper signal transduction and activity-dependent dynamics in excitatory synapses. Key players in these synapses are AMPA-type glutamate receptors (AMPARs), macro-molecular complexes that drive almost any aspect of synapse physiology from synaptogenesis to electrical signal transduction and synaptic plasticity underlying memory formation and learning. We have recently uncovered biogenesis of AMPARs in the ER as a ‘multi-state assembly line’ and found that its impairment/disruption leads to severe consequences in both humans and rodents. In humans loss-of-function mutations in protein FRRS1l, a key determinant of the AMPAR assembly process, lead to severe forms of intellectual disability with strongest impairment in memory formation, motor skills and cognition. In mice, knock-out of FRRS1l abolished activity-dependent synaptic plasticity, reduced synapse formation and maturation and profoundly impaired learning. Interestingly, virally-driven re-expression of FRRS1l fully reversed all knock-out induced phenotypes and thus provided an experimental tool for ‘switching on’ formation of synapses and plastic behavior at will. In this project, we will use these latest insights for a first-time unbiased and comprehensive investigation of proteins that are required for building functional synapses with activity-driven plasticity. For this purpose we will (i) perform quantitative proteomic analyses on defined brain regions from FRRS1l knock-out mice before and after switching on AMPAR biogenesis by stereotactically delivered viruses, (ii) investigate identified key proteins and protein complexes for their subcellular distribution and dynamics and (iii) study their functional significance and characteristics in-vitro and in-vivo. Together, these analyses will decipher the molecular processes driving formation of excitatory synapses and their activity-dependent plasticity.
大脑中信息的处理和存储基本上依赖于兴奋性突触中适当的信号转导和活动依赖性动力学。这些突触中的关键参与者是AMPA型谷氨酸受体(AMPAR),这是一种大分子复合物,它驱动突触生理学的几乎任何方面,从突触发生到电信号转导和突触可塑性,这些突触可塑性是记忆形成和学习的基础。我们最近发现ER中AMPAR的生物发生是一条“多状态装配线”,并发现其损伤/破坏会导致人类和啮齿动物的严重后果。在人类中,蛋白质FRRS 11(AMPAR组装过程的关键决定因素)的功能缺失突变导致严重形式的智力残疾,记忆形成、运动技能和认知能力受损最严重。在小鼠中,敲除FRRS 11消除了活动依赖性突触可塑性,减少了突触形成和成熟,并严重损害了学习能力。有趣的是,病毒驱动的FRRS 11的再表达完全逆转了所有敲除诱导的表型,从而提供了一种随意“开启”突触形成和可塑性行为的实验工具。在这个项目中,我们将利用这些最新的见解,对构建具有活动驱动可塑性的功能性突触所需的蛋白质进行首次无偏见和全面的研究。为此目的,我们将(i)在通过立体定向递送病毒开启AMPAR生物合成之前和之后,对FRRS 11基因敲除小鼠的定义脑区域进行定量蛋白质组学分析,(ii)研究鉴定的关键蛋白质和蛋白质复合物的亚细胞分布和动力学,以及(iii)研究其体外和体内功能意义和特征。总之,这些分析将破译驱动兴奋性突触形成的分子过程及其活动依赖性可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Bernd Fakler其他文献
Professor Dr. Bernd Fakler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Bernd Fakler', 18)}}的其他基金
Structure-function analysis of PMCA-Neuroplastin/Basigin complexes, the native Ca2+ pump(s) of the plasma membrane
PMCA-Neuroplastin/Basigin 复合物(质膜的天然 Ca2 泵)的结构功能分析
- 批准号:
446245862 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Molecular analysis of assembly and function of surface AMPA-receptor complexes in the mammalian brain
哺乳动物大脑表面 AMPA 受体复合物的组装和功能的分子分析
- 批准号:
439189341 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Analysis of the protein nano-environment of voltage-activated N-type Ca2+ channels Cav2.2 in the brain
脑内电压激活N型Ca2通道Cav2.2蛋白纳米环境分析
- 批准号:
218389977 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Identification and functional characterization of BKca channel-associated protein-compplexes
BKca 通道相关蛋白复合物的鉴定和功能表征
- 批准号:
5416575 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Identifizierung und funktionelle Charakterisierung der molekularen Umgebung (Mikrodomäne) kalziumgesteuerter `small conductance` (SK) Kaliumkanäle
钙控制小电导 (SK) 钾通道分子环境(微域)的鉴定和功能表征
- 批准号:
5264730 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
High-resolution proteomics and functional analyses of the podocyte slit diaphragm and its disease-induced dynamics
足细胞裂隙隔膜及其疾病诱导动力学的高分辨率蛋白质组学和功能分析
- 批准号:
442759790 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Assembly and structure of native PMCA-Neuroplastin/Basigin complexes
天然 PMCA-Neuroplastin/Basigin 复合物的组装和结构
- 批准号:
471796820 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants














{{item.name}}会员




