Generalizations of infinite dimensional Laplacians, construction methods of stochastic processes and developments in quantum information analysis
无限维拉普拉斯算子的推广、随机过程的构造方法以及量子信息分析的发展
基本信息
- 批准号:21540151
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we considered a quantization and a new approach to a quantum information analysis by researching the infinite dimensional stochastic analysis jointly from major fields : probability theory, analysis, graph theory, number theory and computer science. Especially we succeeded in constructing the theory of higher order derivatives of white noise based on the stochastic analysis associated with exotic Laplacians defined by higher order Cesaro means of the second differentiation. It is a quite important progress and a creative point that a quantum information analysis in this direction can be constructed.
在这项研究中,我们通过研究主要领域的无限维度随机分析来考虑一种量化信息分析的量化和新方法:概率理论,分析,图理论,数字理论和计算机科学。尤其是我们成功地基于与由高级塞萨罗(Cesaro)第二分化平均值所定义的异国情调的拉普拉斯人相关的随机分析构建了白噪声的高阶理论。可以构建量子信息分析是一个非常重要的进步和创造力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exotic laplacians and associated stochastic processes
- DOI:10.1142/s0219025709003513
- 发表时间:2009-03
- 期刊:
- 影响因子:0
- 作者:L. Accardi;U. Ji;Kimiaki Saitô
- 通讯作者:L. Accardi;U. Ji;Kimiaki Saitô
IMPROVEMENT OF HOWARD'S POLICY ITERATION METHOD FOR APPLICATION TO POLICIES MODELED BY PERIODIC, MARKOV CHAINS
霍华德策略迭代方法的改进,适用于周期性马尔可夫链建模的策略
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Negri;I. and Nishiyama;Y.;K.Saito (with Y.Uchimura)
- 通讯作者:K.Saito (with Y.Uchimura)
Stationary Distributions of the Bernoulli Type Galton-Watson Branching Process with Immigration
伯努利型高尔顿-沃森分支过程的平稳分布与移民
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Y. Uchimura;K. Saito
- 通讯作者:K. Saito
A stationary distribution of the Bernoulli type Galton-Watson branching process with immigration
具有迁移的伯努利型高尔顿-沃森分支过程的平稳分布
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:河上肇;土谷正明;K.Saito (with Y.Uchimura)
- 通讯作者:K.Saito (with Y.Uchimura)
Exotic Laplacians in White Noise Theory
白噪声理论中的奇异拉普拉斯算子
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:入山聖史;大矢雅則;K. Saito
- 通讯作者:K. Saito
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Kimiaki其他文献
SAITO Kimiaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Kimiaki', 18)}}的其他基金
Constructive research on infinite dimensional stochastic Processes and its applications to quantum information analysis
无限维随机过程的建设性研究及其在量子信息分析中的应用
- 批准号:
19540201 - 财政年份:2007
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments on Quantization and Quantum Information Analysis in terms of Infinite Dimensional Stochastic Analysis
无限维随机分析的量化和量子信息分析进展
- 批准号:
17540136 - 财政年份:2005
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Stochastic Processes and the Information Analysis
无限维随机过程与信息分析
- 批准号:
15540141 - 财政年份:2003
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Stochastic Analysis and its Applications
无限维随机分析及其应用
- 批准号:
11640139 - 财政年份:1999
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Analysis and its Applications
无限维分析及其应用
- 批准号:
09640300 - 财政年份:1997
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Integration by parts formulas for non-smooth diffusion processes and their applications
非光滑扩散过程的分部积分公式及其应用
- 批准号:
20K03666 - 财政年份:2020
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
- 批准号:
19K03592 - 财政年份:2019
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing statistical models representing diversity
开发代表多样性的统计模型
- 批准号:
18K13454 - 财政年份:2018
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic calculus of infinite particle systems of long range jumps with long range interactions
具有长程相互作用的长程跳跃无限粒子系统的随机微积分
- 批准号:
17K14206 - 财政年份:2017
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Stochastic calculus for systems with long range interaction
长程相互作用系统的随机微积分
- 批准号:
15K04916 - 财政年份:2015
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)