Direct numerical simulation of gas transfer through the air-water interface in a turbulent flow environment

湍流环境中气体通过空气-水界面传递的直接数值模拟

基本信息

项目摘要

Transfer processes of weakly soluble gases across the air-water interface plays a central role in many environmental and industrial systems. Reaeration in polluted rivers and the absorption of greenhouse gases, notably carbon dioxide into the ocean are two important examples of gas transfer processes in the environment. The difficulty in understanding the gas transfer problem of weakly soluble gases (O2, CO2, CO, NO, NO2) stems from the fact that the process is concentrated within a very thin layer on the liquid side (10-1000 µm). Most previous studies related the gas transfer rate to global measurable parameters. Recent development of advanced optical measurement techniques have provided better insight into the gas transfer problem. However, these techniques still have limitations in resolving the uppermost diffusive sublayer. The aim of this study is to improve the fundamental understanding of the physical mechanisms of gas transfer across the air-water interface in a turbulent flow environment using direct numerical simulations (DNS) by employing an adapted version of the LESOCC code developed at IfH. The DNS technique is highly suited for resolving the complex interaction between the molecular diffusion and turbulent processes near the interface including the uppermost diffusive sublayer. The project focuses on gas transfer processes across a shear-free interface with far-field homogenous turbulent water environment, such as generated by stream flows or grid-stirring. The results of the proposed DNS study aims to fill the gap in fundamental understanding that can not be resolved even with advanced laboratory experimental capabilities.
在许多环境和工业系统中,弱可溶性气体通过空气-水界面的传递过程起着核心作用。污染河流的再曝气和温室气体的吸收,特别是二氧化碳进入海洋,是环境中气体转移过程的两个重要例子。理解弱可溶性气体(O2、CO2、CO、NO、NO2)的气体传递问题的困难源于该过程集中在液体侧的非常薄的层(10-1000 µm)内。大多数以前的研究与气体传输速率的全球可测量的参数。先进的光学测量技术的最新发展提供了更好的洞察气体传输问题。然而,这些技术在分辨最上面的漫射子层方面仍然具有局限性。本研究的目的是通过采用IfH开发的LESOCC代码的改编版本,使用直接数值模拟(DNS),以提高对湍流环境中气-水界面气体传输物理机制的基本理解。DNS技术非常适合于解决复杂的相互作用之间的分子扩散和湍流过程的界面附近,包括最上面的扩散子层。该项目的重点是通过无剪切界面与远场均匀湍流水环境,如由水流或网格搅拌产生的气体传输过程。建议的DNS研究的结果旨在填补基本理解的差距,即使有先进的实验室实验能力也无法解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Herlina Herlina其他文献

Dr.-Ing. Herlina Herlina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Herlina Herlina', 18)}}的其他基金

Laboratory experiments on interfacial heat and gas exchange promoted by surface cooling: novel simultaneous thermal imaging and optical oxygen-concentration measurement
表面冷却促进界面热和气体交换的实验室实验:新型同步热成像和光学氧浓度测量
  • 批准号:
    327259972
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

超声行波微流体驱动机理的试验研究
  • 批准号:
    51075243
  • 批准年份:
    2010
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目
关于图像处理模型的目标函数构造及其数值方法研究
  • 批准号:
    11071228
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-Order Direct Numerical Simulation and Optimization of Novel Ventricular Assist Devices
新型心室辅助装置的高阶直接数值模拟与优化
  • 批准号:
    575915-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
AI aided turbulent combustion modeling based on advanced laser diagnostics and direct numerical simulation data science
基于先进激光诊断和直接数值模拟数据科学的人工智能辅助湍流燃烧建模
  • 批准号:
    20H00224
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Continuous space-time multi-level hp Galerkin-Petrov finite elements for the direct numerical simulation of laser power bed fusion processes
用于激光功率床聚变过程直接数值模拟的连续时空多级 HP Galerkin-Petrov 有限元
  • 批准号:
    441506233
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct Numerical Simulation and Analysis of Turbulent Pipe Flow at High Reynolds Numbers
高雷诺数湍流管流的直接数值模拟与分析
  • 批准号:
    2031650
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Direct Numerical Simulation and Advanced Modelling of Turbulent Flame Kernels for High-Efficiency Low-Emission Spark Ignition Engine
高效低排放火花点火发动机湍流火焰内核的直接数值模拟和高级建模
  • 批准号:
    2282984
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Direct Numerical Simulation of Dual-Plume Interference in a Wall-Bounded Flow
壁限流中双羽流干涉的直接数值模拟
  • 批准号:
    539972-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
An investigation of the self-transition to turbulence by buoyancy force using compressible direct numerical simulation
使用可压缩直接数值模拟研究浮力自转变为湍流的过程
  • 批准号:
    19K14890
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了