Universal description of stochastic oscillators - higher dimensional examples, extraction of the mapping from data, and networks of oscillators

随机振荡器的通用描述 - 高维示例、从数据中提取映射以及振荡器网络

基本信息

项目摘要

Many important non-equilibrium systems display oscillatory behavior that is shaped by pronounced fluctuations in phase and amplitude. Different mathematical models with distinct mechanisms have been suggested for such stochastic oscillators: (i) dynamics with a focus fixed point endowed with noise (the damped harmonic oscillator with thermal fluctuations would be a prominent example); (ii) limit cycles and relaxation oscillators perturbed by white noise; (iii) excitable systems driven by fluctuations; (iv) heteroclinic systems driven by noise. Most of these models are strongly nonlinear and are thus difficult to treat theoretically. A recent theory, put forward by my collaborators and me, provides a universal framework for the description of stochastic oscillators in terms of one of the eigenfunctions of the backward Kolmogorov operator. After projecting the system's variables to a new complex-valued variable, the spontaneous fluctuation statistics, the linear response of the oscillator, and its cross-correlation with another stochastic oscillator to which it is coupled, are all captured by simple and exact analytical expressions. This description is independent of the mechanism for the stochastic oscillation. In this project I want to apply and generalize this theory in three respects: (i) it should be applied to oscillators that have higher dimensions than two going beyond what has been studied before; (ii) the nonlinear transformation at the core of the procedure should be extracted from (simulation or experimental) data; (iii) the theory for coupled stochastic oscillators will be more thoroughly grounded and, moreover, extended to the case of networks of stochastic oscillators (more than two oscillators, the case previously investigated). These explorations and extensions of the framework have potential applications for the theoretical description of many systems outside of thermodynamic equilibrium, in particular in biology.
许多重要的非平衡系统显示出由相位和振幅的显著波动所形成的振荡行为。对于这样的随机振子,已经提出了具有不同机制的不同数学模型:(i)具有赋予噪声的焦点不动点的动力学(具有热涨落的阻尼谐振子将是一个突出的例子);(ii)受白色噪声扰动的极限环和弛豫振子;(iii)由涨落驱动的可激发系统;(iv)由噪声驱动的异宿系统。这些模型大多是强非线性的,因此很难在理论上处理。最近的一个理论,提出了我的合作者和我,提供了一个通用的框架来描述随机振荡器的一个特征函数的向后柯尔莫哥洛夫运营商。在将系统的变量投影到一个新的复值变量后,自发波动统计,振荡器的线性响应,以及它与它所耦合的另一个随机振荡器的互相关,都被简单而精确的解析表达式所捕获。这种描述与随机振荡的机制无关。 在这个项目中,我想在三个方面应用和推广这个理论:(i)它应该被应用到比以前研究的更高维度的振子;(ii)在过程的核心的非线性变换应该被提取出来。(模拟或实验)数据;(iii)耦合随机振子的理论将更彻底地扎根,而且,将扩展到随机振子网络的情况。(两个以上的振荡器,以前调查的情况)。这些探索和扩展的框架有潜在的应用程序的热力学平衡以外的许多系统的理论描述,特别是在生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Benjamin Lindner其他文献

Professor Dr. Benjamin Lindner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Benjamin Lindner', 18)}}的其他基金

Benefits of noise in the transmission and processing of time-dependent stimuli by populations of sensory neurons
噪声在感觉神经元群传输和处理时间依赖性刺激方面的好处
  • 批准号:
    250455001
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

A stochastic description of protein conformational transition by global landscape calculation
通过全局景观计算随机描述蛋白质构象转变
  • 批准号:
    19K06597
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
  • 批准号:
    1524241
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
  • 批准号:
    1434198
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: A Lagrangian Description of Breaking Ocean Surface Waves from Laboratory Measurements and Stochastic Parameterizations.
合作研究:根据实验室测量和随机参数化对破碎海洋表面波浪的拉格朗日描述。
  • 批准号:
    1434694
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
  • 批准号:
    7293610
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Statistical Description of Stochastic Dynamical Systems
随机动力系统的统计描述
  • 批准号:
    0209959
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Modeling and Stochastic Sensitivity Analysis for Data Mining
数据挖掘的数学建模和随机敏感性分析
  • 批准号:
    11680435
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscopic multicluster description of light nuclei with stochastic variational method
随机变分法轻核微观多团簇描述
  • 批准号:
    06640381
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CFD Simulation of Turbulent Combustion for Description of Non-Uniform Process by a Stochastic Approach
用随机方法描述非均匀过程的湍流燃烧 CFD 模拟
  • 批准号:
    04650187
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了