Differential geometric research on surfaces admitting singularities and its application

承认奇点的曲面微分几何研究及其应用

基本信息

  • 批准号:
    22540100
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2010
  • 资助国家:
    日本
  • 起止时间:
    2010-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
(Co)orientability of horospherical linear Weingarten fronts
星球线性温加滕锋面的(共)定向性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Fujimori;K.Yamada;et.al.;國分雅敏;Masatoshi Kokubu;國分雅敏;Masatoshi Kokubu
  • 通讯作者:
    Masatoshi Kokubu
Orientability of linear Weingarten surfaces, spacelike CMC-1 surfaces and maximal surfaces
线性 Weingarten 曲面、类空间 CMC-1 曲面和最大曲面的定向性
  • DOI:
    10.1002/mana.200910176
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lothar Gottsche;中島啓、吉岡康太;M.Kokubu and M.Umehara
  • 通讯作者:
    M.Kokubu and M.Umehara
Visualization of Tangent Developables on a Volumetric Display
体积显示器上切线可展物的可视化
Linear Weingarten surfaces in a space form
空间形式的线性 Weingarten 曲面
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Fujimori;K.Yamada;et.al.;國分雅敏;Masatoshi Kokubu
  • 通讯作者:
    Masatoshi Kokubu
Hyperbolic metrics on Riemann surfaces and space-like CMC-1 Surfaces in de Sitter 3-Space in "Recent Trends in Lorentzian Geometry"
“洛伦兹几何的最新趋势”中德西特 3 空间中黎曼曲面和类空间 CMC-1 曲面上的双曲度量
  • DOI:
    10.1007/978-1-4614-4897-6_1
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoichi Fujimori;Yu Kawakami;Masatoshi Kokubu;Wayne Rossman;Masaaki Umehara and Kotaro Yamada
  • 通讯作者:
    Masaaki Umehara and Kotaro Yamada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOKUBU Masatoshi其他文献

KOKUBU Masatoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOKUBU Masatoshi', 18)}}的其他基金

Differential geometric research of regular surfaces in a wider sense
广义正曲面微分几何研究
  • 批准号:
    17K05227
  • 财政年份:
    2017
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential geometric researches on surfaces in a space of constant curvature and their singularities
常曲率空间曲面及其奇点的微分几何研究
  • 批准号:
    18540096
  • 财政年份:
    2006
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

空间形式中平均曲率流与几类曲率幂次流收敛性的若干研究
  • 批准号:
    QN25A010037
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流及相关子流形的若干问题研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
实空间形式中子流形共形平均曲率流的爆破 及相关问题研究
  • 批准号:
    Q24A010043
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无界区域上Minkowsky空间中给定平均曲率方程解的正则性、衰减率及对称破缺研究
  • 批准号:
    12461036
  • 批准年份:
    2024
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
具正平均曲率的厄密特度量的存在性及相关问题的研究
  • 批准号:
    12371062
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Minkowski空间中给定平均曲率问题正解的全局分歧研究
  • 批准号:
    CSTB2023NSCQ-BHX0226
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
平均曲率流与子流形几何的若干研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
斜平均曲率流与薛定谔流
  • 批准号:
    LY22A010005
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流的奇点性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026251
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
調和関数論を用いた平均曲率零曲面および関連する曲面論の研究
利用调和函数理论研究零平均曲率曲面及相关曲面理论
  • 批准号:
    23K12979
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
  • 批准号:
    23K03081
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2306233
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Continuing Grant
離散的な平均曲率一定曲面の正則写像による表現公式
具有恒定平均曲率的离散曲面的全纯映射表达式公式
  • 批准号:
    23KF0051
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
  • 批准号:
    572922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    University Undergraduate Student Research Awards
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
  • 批准号:
    2758306
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Studentship
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
  • 批准号:
    22K03300
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了