Theoretical and Computational Foundations of Multi-Scale Analysis of Inelastic Solid Materials

非弹性固体材料多尺度分析的理论和计算基础

基本信息

项目摘要

The key aspect of the project is the development of new perspectives towards the formulation of micro-to-macro transitions and micro-structure developments in solid materials on multiple scales. The micro-structures may a priori be defined as representative volume elements of heterogeneous materials or may in homogeneous materials be generated at a certain stage of the deformation process as a result of a material instability phenomenon. A fundamentally new viewpoint to the homogenization analysis of inelastic materials is provided by recently developed incremental variational formulations of homogenization where fine-scale fluctuation fields are defined as energy minimizers of suitably defined homogenization functionals. Methodical basis is the application of mathematical concepts for the treatment of non-convex energy minimization problems and their convexifications. Specification of these concpts to engineering problems needs the development of a variational-based generic theory of stability for inelastic solids and the construction of new computational tools for an effective handling of hierarchical multi-scale homogenization procedures in nonlinear solid mechanics. We focus on constitutive models of finite elastoplasticity and damage mechanics with regard to applications to metals and geomaterials. The overall result of the project will be a better understanding of the mathematical basis, the physical mechanisms and the numerical of material instability phenomena in solids.
该项目的关键方面是发展新的观点,以制定微观到宏观的过渡和微观结构的发展,在固体材料的多个尺度。微结构可以先验地被定义为非均质材料的代表性体积元素,或者可以在均质材料中由于材料不稳定现象而在变形过程的某个阶段产生。非弹性材料的均匀化分析提供了一个从根本上新的观点,最近开发的增量变分公式的均匀化细尺度波动场被定义为适当定义的均匀化泛函的能量最小。方法基础是应用数学概念处理非凸能量最小化问题及其凸化。这些concpts工程问题的规范需要发展一个基于变分的通用理论的非弹性固体的稳定性和建设新的计算工具,在非线性固体力学的层次多尺度均匀化程序的有效处理。我们专注于有限弹塑性本构模型和损伤力学方面的应用,金属和岩土材料。该项目的总体结果将是更好地理解固体中材料不稳定现象的数学基础,物理机制和数值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Christian Miehe (†)其他文献

Professor Dr.-Ing. Christian Miehe (†)的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Christian Miehe (†)', 18)}}的其他基金

Approaches to Fracture Mechanics based on Local and Global Energy Minimization
基于局部和全局能量最小化的断裂力学方法
  • 批准号:
    34281900
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hybrid Micro-Macro Modeling of Evolving Microstructures in Finite Plasticity
有限塑性中演化微观结构的混合微观-宏观建模
  • 批准号:
    35737237
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Micro-mechanically motivated continuum-thermodynamical material models for polymers below and above the glass temperature
低于和高于玻璃温度的聚合物的微机械驱动连续热力学材料模型
  • 批准号:
    5285692
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parameteridentifikation ausgewählter makroskopischer Materialmodelle zur finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmeßmethoden
基于光场测量方法的有限弹性和非弹性选定宏观材料模型的参数识别
  • 批准号:
    5367212
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
  • 批准号:
    EP/Y028783/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
  • 批准号:
    2214021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRCNS: Computational Foundations for Externalizing/Internalizing Psychopathology
CRCNS:外化/内化精神病理学的计算基础
  • 批准号:
    10831117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Computational Foundations of Modern Machine Learning
职业:现代机器学习的计算基础
  • 批准号:
    2239265
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
  • 批准号:
    2214020
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational foundations of active visual sensing
主动视觉传感的计算基础
  • 批准号:
    10431247
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Foundations of Computational Mathematics Conference – FoCM 2023
计算数学基础会议 – FoCM 2023
  • 批准号:
    2232812
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Foundations of quantum computational advantage (FoQaCiA)
量子计算优势的基础 (FoQaCiA)
  • 批准号:
    569582-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
The foundations of quantum computational advantage
量子计算优势的基础
  • 批准号:
    RGPIN-2022-03103
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Computational Foundations of Machine Learning in the Era of Big Data
大数据时代机器学习的计算基础
  • 批准号:
    RGPIN-2017-05032
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了