Developing statistical asymptotic theory for jump processes and its applications

发展跳跃过程的统计渐近理论及其应用

基本信息

  • 批准号:
    23740082
  • 负责人:
  • 金额:
    $ 2.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

Mainly, we have derived the following results concerning statistical inference for stochastic process models with jumps: (1) Asymptotic normality of the Gaussian quasi-likelihood type estimator together with an easy-to-use approximate confidence regions, when the model has general non-linear coefficients and non-Gaussian noise; (2) Model-free asymptotic distribution of a bias-corrected functional of residuals, with applications to noise-normality and diffusion-coefficient misspecification tests, when the model is of a general continuous-time regression type; (3) Asymptotic mixed normality of the least-absolute deviation estimator and the quasi-likelihood estimator based on the small-time stable approximation, when the noise process can be approximately non-Gaussian stable in small time. In particular, the proposed estimator in (3) is much more efficient than that in (1), while the model setting in (3) is more limited compared with that of (1).
主要得到了具有跳跃的随机过程模型的统计推断结果:(1)当模型具有一般非线性系数和非高斯噪声时,高斯拟似然型估计量的渐近正态性和易于使用的近似置信区域;(2)当模型为一般连续时间回归类型时,残差偏校正函数的无模型渐近分布,并应用于噪声正态性检验和扩散系数错配检验;(3)当噪声过程可以在小时间近似非高斯稳定时,基于小时间稳定近似的最小绝对偏差估计量和拟似然估计量的渐近混合正态性。特别是,(3)中提出的估计器比(1)中的估计器效率高得多,而(3)中的模型设置与(1)相比更有限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On estimating stable Ornstein-Uhlenbeck processes
关于估计稳定的 Ornstein-Uhlenbeck 过程
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kohatsu-Higa;N. Vayatis;K. Yasuda;Shuya Chiba;酒井拓史;増田 弘毅
  • 通讯作者:
    増田 弘毅
Hiroki Masuda (personal webpage)
增田弘树(个人网页)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On statistical inference for Levy-driven models
Levy 驱动模型的统计推断
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes
离散观测随机过程的自归一化残差泛函的渐近
  • DOI:
    10.1016/j.spa.2013.03.013
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    X. Huang;塩沢裕一;H. Masuda and N. Yoshida;渡部善隆,藤原宏志,中尾充宏;Kaoru Fujioka;H. Masuda;Kaoru Fujioka;Y. Iso and H. Fujiwara;Yuichi Shiozawa;H. Masuda
  • 通讯作者:
    H. Masuda
On simulation of tempered stable random variates
  • DOI:
    10.1016/j.cam.2010.12.014
  • 发表时间:
    2010-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ray Kawai;Hiroki Masuda
  • 通讯作者:
    Ray Kawai;Hiroki Masuda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUDA Hiroki其他文献

MASUDA Hiroki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUDA Hiroki', 18)}}的其他基金

Theory construction of asymptotic statistics for stochastic processes and its application to high-frequency data analysis
随机过程渐近统计理论构建及其在高频数据分析中的应用
  • 批准号:
    20740061
  • 财政年份:
    2008
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

Historical Research on the Architecture of Public Halls, Viewed as the Process of Establishing the Place of Public Space
从公共空间场所确立过程看公共大厅建筑的历史研究
  • 批准号:
    23K04213
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Role of Diet in the Process of Long Term Cultural Integration.
饮食在长期文化融合过程中的作用。
  • 批准号:
    2312349
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Standard Grant
A Developmental Model to Understand the Process of Instructor Implementation of Evidence-Based Teaching Practices
理解教师实施循证教学实践过程的发展模型
  • 批准号:
    2235966
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Standard Grant
The process of self-regulated learning in English language learning from the complex dynamic systems approach
从复杂动态系统方法看英语学习中的自我调节学习过程
  • 批准号:
    23K12243
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Involvement of non-state actors in the process for drafting general comments: Focusing on themantic human rights treaties
非国家行为者参与一​​般性意见起草过程:重点关注专题人权条约
  • 批准号:
    23K18753
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
An investigation into the process of constructing the social problems surrounding tattoos in Japan, focusing on its discourse as a fashion
调查日本纹身社会问题的构​​建过程,重点关注纹身作为一种时尚的话语
  • 批准号:
    23K12596
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The process of outreach service for people with mental disorders in a socially withdrawal condition
为社交退缩的精神障碍人士提供外展服务的过程
  • 批准号:
    23K12639
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying the process of academic field formation via delayed recognition
通过延迟识别来识别学术领域形成的过程
  • 批准号:
    22KJ0773
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Process of Settlement Space Formation in Country Town Since the Modern Period
近代以来乡村城镇聚落空间的形成过程
  • 批准号:
    22KJ1117
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conflict and Institutionalization Surrounding Drug-Induced Sufferings: The Sociology of Drug-Induced Sufferings in the Process of Social Order Formation
围绕毒品引起的痛苦的冲突和制度化:社会秩序形成过程中毒品引起的痛苦的社会学
  • 批准号:
    23H00892
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了