Analysis of the solution space for the quantum KZ equation and its applications to integrable systems

量子KZ方程解空间分析及其在可积系统中的应用

基本信息

  • 批准号:
    23740119
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

We get two results about related problems to the quantum Knizhnik-Zamolodchikov equation. First, we constructed an algebra which describes the multiplication structure of a family of q-series containing a q-analogue of multiple zeta values. A family of linear relations called the double shuffle relations is formulated and proved in our framework. Second, we defined a discrete analogue of the Hamiltonian of the non-ideal Bose gas with delta-potentials, and constructed eigenfunctions by means of the Bethe ansatz method making use of a representation of the affine Hecke algebra.
我们得到了关于量子 Knizhnik-Zamolodchikov 方程相关问题的两个结果。首先,我们构建了一个代数,它描述了包含多个 zeta 值的 q 类似物的 q 级数族的乘法结构。在我们的框架中公式化并证明了称为双洗牌关系的线性关系族。其次,我们定义了具有δ势的非理想玻色气体的哈密顿量的离散模拟,并利用仿射赫克代数的表示通过Bethe ansatz方法构造了本征函数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A generalization of duality for finite multiple harmonic sum
有限多重调和和的对偶性推广
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yamamoto;M.;鈴木 香奈子;Kanako Suzuki;山本 征法;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Yoshihiro Takeyama;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Kanako Suzuki;Yoshihiro Takeyama;Kanako Suzuki;竹山美宏;Kanako Suzuki;鈴木 香奈子;竹山美宏;竹山美宏
  • 通讯作者:
    竹山美宏
JSPS-NWO Seminar : Analysis
JSPS-NWO 研讨会:分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yamamoto;M.;鈴木 香奈子;Kanako Suzuki;山本 征法;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Yoshihiro Takeyama;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Kanako Suzuki;Yoshihiro Takeyama;Kanako Suzuki;竹山美宏;Kanako Suzuki;鈴木 香奈子;竹山美宏
  • 通讯作者:
    竹山美宏
A discrete analogue of periodic delta Bose gas and affine Hecke algebra
  • DOI:
    10.1619/fesi.57.107
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Takeyama
  • 通讯作者:
    Y. Takeyama
On relations for a q-analogue of multiple zeta values
多个 zeta 值的 q 类似物的关系
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yamamoto;M.;鈴木 香奈子;Kanako Suzuki;山本 征法;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Yoshihiro Takeyama;Kanako Suzuki;Yoshihiro Takeyama;鈴木 香奈子;Kanako Suzuki;Yoshihiro Takeyama;Kanako Suzuki;竹山美宏;Kanako Suzuki;鈴木 香奈子;竹山美宏;竹山美宏;Yoshihiro Takeyama
  • 通讯作者:
    Yoshihiro Takeyama
The Algebra of a q-Analogue of Multiple Harmonic Series
多重调和级数的 q 模拟代数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEYAMA Yoshihiro其他文献

Finite multiple harmonic q-series at a root of unity and Kaneko-Zagier conjecture
单位根处的有限多重调和 q 级数和 Kaneko-Zagier 猜想
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henrik Bachmann;Yoshihiro Takeyama;Koji Tasaka;竹山美宏;TAKEYAMA Yoshihiro;Takeyama Yoshihiro
  • 通讯作者:
    Takeyama Yoshihiro
副有限自由群への副有限写像類群の外作用の像の中心化群について
论子有限映射类群到子有限自由群的外部作用像的中心群
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    BACHMANN Henrik;TAKEYAMA Yoshihiro;TASAKA Koji;飯島優
  • 通讯作者:
    飯島優
A modular approach to hyperplane arrangements
超平面排列的模块化方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    BACHMANN Henrik;TAKEYAMA Yoshihiro;TASAKA Koji;Torielli Michele
  • 通讯作者:
    Torielli Michele
On a weighted sum of multiple T-values of fixed weight and depth
固定权重和深度的多个 T 值的加权和
Q^-multiple zeta value
Q^-多zeta值
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henrik Bachmann;Yoshihiro Takeyama;Koji Tasaka;竹山美宏;TAKEYAMA Yoshihiro
  • 通讯作者:
    TAKEYAMA Yoshihiro

TAKEYAMA Yoshihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEYAMA Yoshihiro', 18)}}的其他基金

Algebraic analysis of difference equations arising from integrable systems
可积系统差分方程的代数分析
  • 批准号:
    26400106
  • 财政年份:
    2014
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

多重ゼータ値とmould理論
多个zeta值和模具理论
  • 批准号:
    23KJ1420
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
q類似に着目した有限多重ゼータ値と対称多重ゼータ値の代数的構造に関する研究
关注q-相似性的有限多重zeta值和对称多重zeta值的代数结构研究
  • 批准号:
    23K03072
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
tモチーフを用いた正標数多重ゼータ値またその変種の独立性に関する研究
使用 t-motifs 研究正特征多 zeta 值及其变体的独立性
  • 批准号:
    22KJ2534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多重ゼータ値と関連する多重級数の数論的性質の研究
多zeta值相关的多级数算术性质研究
  • 批准号:
    21K03168
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
種々の多重ゼータ値における有限類似と対称類似の統一理論の構築
不同多zeta值下有限相似性和对称相似性统一理论的构建
  • 批准号:
    21K03189
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多重ゼータ値と超幾何関数の新しい関係の研究
多zeta值与超几何函数新关系研究
  • 批准号:
    21K03185
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新しい積分表示による広いクラスの多重ゼータ値の関係式
使用新积分表示的宽类多个 zeta 值的关系表达式
  • 批准号:
    20K03523
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
種々の多重ゼータ値の統一的および相互発展的な研究
各种多 zeta 值的统一和相互发展的研究
  • 批准号:
    20K14294
  • 财政年份:
    2020
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
組合せ論的手法を用いた多重ゼータ値・多重ポリベルヌーイ数の代数的構造に関する研究
利用组合方法研究多个zeta值和多个聚伯努利数的代数结构
  • 批准号:
    18K03243
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
モチヴィックガロア群と多重ゼータ値から広がる数学ー整数論からの解放ー
数学从动机伽罗瓦群和多个zeta值扩展 - 从数论中解放 -
  • 批准号:
    18H01110
  • 财政年份:
    2018
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了