抗アテローム性動脈硬化症治療薬評価のための三次元微小血管チップ

三维微血管芯片用于抗动脉粥样硬化药物评价

基本信息

  • 批准号:
    14F04720
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

AIMS: This two-year JSPS postdoctoral fellowship (FY2014-2016) aims at fabricating a three-dimensional (3D) co-culture artery-on-a-chip to closely simulate the human vascular morphology, both in the healthy and inflammatory disease conditions. The longer-term goal of this project is to develop viable in vitro tools to support high-throughput therapeutic and biopharmaceutical research of various drugs and pharmaceutical formulated compounds.PROGRESS: To date, we have established two simple needle-based fabrication procedures to achieve controllable arterial architectures on a microchip; (a) an arteriole-like bilayer of human vascular smooth muscle cells (SMC) and endothelial cells (EC), and (b) an artery-like structure composed of multilayers of SMC covered by an inner EC monolayer lining. These proof-of-concept microvascular models have been extensively validated for their robustness and reproducibility, as well as for physical stability and metabolic behaviors to mimic the healthy state of a blood vessel. Meanwhile, experiments are ongoing to incorporate various pathological factors into these artery-like tissues to induce vascular inflammatory disease.OUTCOME; The results obtained have formed the basis for a manuscript, which is near to submission (by April 2016) as a full length paper to an international tissue engineering journal. It also contributes to a poster presentation at the University of Tokyo Life Science Symposium (第16回東大生命科学シンポジウム) on April 23, 2016.
AIMS: This two-year JSPS postdoctoral fellowship (FY2014-2016) aims at fabricating a three-dimensional (3D) co-culture artery-on-a-chip to closely simulate the human vascular morphology, both in the healthy and inflammatory disease conditions. The longer-term goal of this project is to develop viable in vitro tools to support high-throughput therapeutic and biopharmaceutical research of various drugs and pharmaceutical formulated compounds.PROGRESS: To date, we have established two simple needle-based fabrication procedures to achieve controllable arterial architectures on a microchip; (a) an arteriole-like bilayer of human vascular smooth muscle cells (SMC) and endothelial cells (EC), and (b) an artery-like structure composed of multilayers of SMC covered by an inner EC monolayer lining. These proof-of-concept microvascular models have been extensively validated for their robustness and reproducibility, as well as for physical stability and metabolic behaviors to mimic the healthy state of a blood vessel. Meanwhile, experiments are ongoing to incorporate various pathological factors into these artery-like tissues to induce vascular inflammatory disease.OUTCOME; The results obtained have formed the basis for a manuscript, which is near to submission (by April 2016) as a full length paper to an international tissue engineering journal. It also contributes to a poster presentation at the University of Tokyo Life Science Symposium (the 16th Dongda Life Science Symposium) on April 23, 2016.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A minimalist design of biomimetic microvascular models
仿生微血管模型的简约设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan;A.;Matsunaga;Y.T.
  • 通讯作者:
    Y.T.
Biomimetic microvascular chip for high throughput therapeutic research
用于高通量治疗研究的仿生微血管芯片
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan;A.;Yukawa;Y.;Fujisawa;K.;Matsunaga;Y.T
  • 通讯作者:
    Y.T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

松永 行子其他文献

血管新生研究のための in vitro 微小血管モデル
用于血管生成研究的体外微血管模型
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    湯川 泰弘,末弘 淳一,金 範埈;松永 行子
  • 通讯作者:
    松永 行子
人工微小血管モデルの血管機能解析への応用 Analysis of functions of blood vessel using an artificial microvessel model
使用人工微血管模型分析血管功能
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    薄葉 亮;J. Pauty;F. Soncin;松永 行子;薄葉亮,Joris Pauty,Fabrice Soncin,松永行子
  • 通讯作者:
    薄葉亮,Joris Pauty,Fabrice Soncin,松永行子
生活習慣と毛細血管構造の相関調査
生活习惯与毛细血管结构的相关性调查
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eujin Lee;Haruko Takahashi;Joris Pauty;Maki Kabara;Jun-ichi Kawabe; Yukiko T. Matsunaga;松永行子;松永 行子
  • 通讯作者:
    松永 行子
血管機能評価のためのin vitro遺伝子ノックダウン微小血管モデル
用于血管功能评估的体外基因敲除微血管模型
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    薄葉 亮;J. Pauty;F. Soncin;松永 行子
  • 通讯作者:
    松永 行子
No-dialysate micro hemodialysis system
无透析液微量血液透析系统
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    湯川 泰弘,末弘 淳一,金 範埈;松永 行子;H. Ito, I.Sanada, Gunawan Setia Prihandana, M. Hayashi, Y.Kanno, N.Miki
  • 通讯作者:
    H. Ito, I.Sanada, Gunawan Setia Prihandana, M. Hayashi, Y.Kanno, N.Miki

松永 行子的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('松永 行子', 18)}}的其他基金

グリンパティッククリアランス血液脳関門チップ:メカニズムと脳疾患への影響
类淋巴清除血脑屏障芯片:机制及其对脑疾病的影响
  • 批准号:
    24KF0033
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
中枢神経回路修復機構解明のためのin vitro微小環境プラットフォームの創製
创建阐明中枢神经回路修复机制的体外微环境平台
  • 批准号:
    23K18559
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dynamic monitoring of microvessel models in time and space
微血管模型时空动态监测
  • 批准号:
    20F20806
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
マイクロ工学によるがん微小環境モデルの構築
利用微工程构建癌症微环境模型
  • 批准号:
    15F15767
  • 财政年份:
    2015
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TFTマイクロ流路デバイスによるスマート癌診断システムの開発
利用TFT微通道器件开发智能癌症诊断系统
  • 批准号:
    13F03353
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
  • 批准号:
    BB/Y513994/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Exploration of pathology in Moyamoya disease; co-culture model of vascular endothelial and smooth muscle cells derived from induced pluripotent stem cells
烟雾病病理学探索;
  • 批准号:
    20K22775
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The role of PAR2 and HuR in programming atherosclerotic vascular smooth muscle cells
PAR2和HuR在动脉粥样硬化血管平滑肌细胞编程中的作用
  • 批准号:
    10749319
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
Branched-chain Keto-acids and Aerobic Glycolysis in Vascular Smooth Muscle Cells
血管平滑肌细胞中的支链酮酸和有氧糖酵解
  • 批准号:
    10731096
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
Novel Calcium Signaling Nanodomains in Vascular Smooth Muscle Cells
血管平滑肌细胞中的新型钙信号纳米结构域
  • 批准号:
    10744522
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
Effects of Mechanical Stress and Phenotype Switching on Human Stem Cell-Derived Vascular Smooth Muscle Cells: Modeling Gene Regulatory Networks
机械应力和表型转换对人类干细胞衍生的血管平滑肌细胞的影响:基因调控网络建模
  • 批准号:
    2135907
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Lesions and loss of smooth muscle cells in brain underlies small vessel disease
大脑中平滑肌细胞的病变和损失是小血管疾病的基础
  • 批准号:
    10527075
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
Epigenetic Regulation of Phenotypic Plasticity of Vascular Smooth Muscle Cells
血管平滑肌细胞表型可塑性的表观遗传调控
  • 批准号:
    RGPIN-2020-04592
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Proteolytic activation of calcium channels: potential target for channel - directed therapeutics in arterial smooth muscle cells
钙通道的蛋白水解激活:动脉平滑肌细胞通道定向治疗的潜在靶点
  • 批准号:
    MR/W001373/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Epigenetic reprogramming of calcified vascular smooth muscle cells as a treatment for vascular calcification
钙化血管平滑肌细胞的表观遗传重编程作为血管钙化的治疗
  • 批准号:
    nhmrc : 2002142
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Ideas Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了