Nicht-perturbative Analyse von Effekten der starken Wechselwirkung, durch numerische Simulationen auf dem Gitter
通过网格数值模拟对强相互作用效应进行非微扰分析
基本信息
- 批准号:5442439
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2005
- 资助国家:德国
- 起止时间:2004-12-31 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our project is concerned with the investigation of non-perturbative aspects of Quantum ChromoDynamics (QCD), the field theory that is believed to describe strong interaction between elementary particles. In particular, we consider the theory regularised in a gauge invariant way on the lattice, where non-perturbative computations are feasible by means of Monte Carlo simulations. We will focus our attention on the theoretical evaluation of quantities relevant for the phenomenology of the Standard Model, such as Low Energy Constants of Chiral Perturbation Theory and matrix elements of the effective weak Hamiltonian operator, which are dominated by non-perturbative QCD contributions. We plan to simulate two different ultraviolet regularisations of the quark fields: chirally twisted Wilson fermions (twisted mass) and the overlap realization of chirally invariant Ginsparg - Wilson fermions (for small volumes). We also are going to improve algorithmic techniques relevant for: efficient computations with overlap fermions, initially still in the quenched approximation (i.e. without sea quark effects); unquenched simulations of fermions, in a first stage limited to the computationally less expensive formulation with chirally twisted Wilson fermions.
我们的项目涉及量子色动力学(QCD)的非微扰方面的研究,这种场论被认为描述了基本粒子之间的强相互作用。特别地,我们考虑在晶格上以规范不变的方式正则化的理论,其中通过蒙特卡罗模拟的方式进行非微扰计算是可行的。我们将重点关注与标准模型现象学相关的量的理论评估,例如手性微扰理论的低能量常数和有效弱哈密顿算子的矩阵元素,这些量以非微扰QCD贡献为主。我们计划模拟夸克场的两种不同的紫外线正则化:手性扭曲威尔逊费米子(扭曲质量)和手性不变的金斯帕格-威尔逊费米子(小体积)的重叠实现。我们还将改进与以下相关的算法技术:使用重叠费米子进行高效计算,最初仍处于淬灭近似状态(即没有海夸克效应);费米子的未淬火模拟,在第一阶段仅限于计算成本较低的手性扭曲威尔逊费米子公式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Thomas Chiarappa其他文献
Dr. Thomas Chiarappa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
- 批准号:
2310243 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
- 批准号:
2889469 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
- 批准号:
2890362 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




