Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
基本信息
- 批准号:2310243
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professor Alexander Monin at the University of South Carolina.Quantum Field Theory (QFT) has played a pivotal role in our understanding of the fundamental nature of the universe for nearly a century. The Standard Model of particle physics, which is based on QFT, has been a remarkable achievement. However, there are still unresolved questions within the Standard Model that require further investigation. The complexity of QFT poses a challenge in answering these questions. While systems with a small number of weakly interacting particles can be effectively studied, systems influenced by strong forces, such as the constituents of a proton, or systems with large numbers of particles, present significant obstacles to systematic description. Such systems are called "non-perturbative", and addressing these non-perturbative systems represents one of the biggest challenges in 21st-century theoretical physics. In this project, Professor Monin will develop new methods and improve existing methods that are specifically tailored to addressing these non-perturbative systems. By advancing our understanding of the structure of QFT and employing these methods, insight is gained into the unanswered questions within the Standard Model of particle physics. This research endeavors to promote the progress of science in one of its most fundamental directions: the theoretical understanding of nature and the mechanisms underlying its laws. By shedding light on these mysteries, this project serves the national interest by advancing our knowledge and contributing to the overall progress of scientific discovery. Furthermore, this project aims to attract and involve students, providing them with valuable training and fostering their growth as successful researchers. More technically, this project is divided into three parts: QFT Structure, New Methods and Techniques, and Particle Physics. The milestones of this project include studying processes involving multiple quanta, enhancing existing techniques like Hamiltonian truncation and resurgence to address realistic systems, and applying known methods such as dispersion relations to study phenomena accessible by current and future Intensity Frontier experiments. Through these efforts, Professor Monin seeks to advance our theoretical understanding of QFT, thereby enabling the analysis of non-perturbative phenomena. Additionally, this research project is designed to have a broader impact beyond high-energy physics. A deeper understanding of the structure of QFT will benefit any field utilizing QFT.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助南卡罗来纳州大学亚历山大莫宁教授的研究活动。近世纪来,量子场论在我们对宇宙基本性质的理解中发挥了举足轻重的作用。基于量子场论的粒子物理标准模型是一项了不起的成就。然而,标准模型中仍有一些未解决的问题需要进一步研究。QFT的复杂性对回答这些问题提出了挑战。虽然可以有效地研究具有少量弱相互作用粒子的系统,但受强作用力影响的系统,例如质子的成分,或具有大量粒子的系统,对系统描述构成了重大障碍。这种系统被称为“非微扰”,解决这些非微扰系统是21世纪理论物理学的最大挑战之一。在这个项目中,Monin教授将开发新的方法,并改进专门针对这些非微扰系统的现有方法。通过推进我们对QFT结构的理解,并采用这些方法,我们可以深入了解粒子物理标准模型中未回答的问题。该研究致力于促进科学在其最基本的方向之一的进步:自然和其规律的机制的理论理解。通过揭示这些奥秘,该项目通过推进我们的知识和促进科学发现的整体进展来服务于国家利益。 此外,该项目旨在吸引和参与学生,为他们提供有价值的培训,并促进他们成长为成功的研究人员。从技术上讲,该项目分为三个部分:QFT结构,新方法和技术以及粒子物理。该项目的里程碑包括研究涉及多个量子的过程,增强现有的技术,如哈密顿截断和复苏,以解决现实系统,并应用已知的方法,如色散关系,以研究当前和未来的强度前沿实验可访问的现象。通过这些努力,莫宁教授试图推进我们对QFT的理论理解,从而使非微扰现象的分析成为可能。此外,该研究项目旨在产生超越高能物理的更广泛影响。对QFT结构的深入理解将使任何使用QFT的领域受益。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Monin其他文献
Flux correlators and semiclassics
通量相关器和半经典
- DOI:
10.1007/jhep03(2024)067 - 发表时间:
2023 - 期刊:
- 影响因子:5.4
- 作者:
Eren Firat;Alexander Monin;R. Rattazzi;Matthew T. Walters - 通讯作者:
Matthew T. Walters
Alexander Monin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
- 批准号:
2889469 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
- 批准号:
2890362 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant