組合せ問題に対するロバスト最適化

组合问题的鲁棒优化

基本信息

  • 批准号:
    16J11392
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-22 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

最適化手法のほとんどは,入力データが確定されたものとして扱わされ,アルゴリズムが設計されている.しかし,多くの現実問題では入力データには曖昧さや不確定要素が内在している.この様に不確定要素を深く考慮せず,予測値を確定入力データとして、既存の最適化手法を適用して得られた解の場合は,入力データの変動が解に影響しない機能がないため,大きな後悔を招く場合がある.本研究では,このような問題を現実的に解決可能とする,ロバスト基準での最適化問題に対する手法を提案した.2016年度は多次元ナップサック問題を一般化した多次元ナップサック問題のロバスト最適化を対象とした.多次元ナップサック問題は,NP困難であることが知られているが,ナップサック制約が複数ある問題で,積荷作業や,資金計画問題など,数多く現実社会の最適化問題への定式化の結果として多く見受けられる非常に重要な問題である.多次元ナップサック問題を解くためのロバスト最適化手法として,2015年の研究で提案した相対代替法を行生成アプローチで改善していく手法(反復相対代替法)を提案した.各反復では,得られた制約は線形であり,相対代替法により,最適値に対する上界と下界の両方が得られ,これらの値の近さを検証することで性能を評価することができた.その結果を国内会議で発表を行った.また,性能の善し悪しを判断するため,基本手法と知られているシナリオ固定法,ベンダース分解法とそれに基づいた分枝カット法を実装,生成した問題例に対して各解法の比較実験を行い,その研究成果を国際会議で発表した.加えて,提案した反復相対代替法が汎用的な手法であることを検証するため,他の代表的なロバスト最適化問題として,ナップサック問題,集合被覆問題の研究との比較実験を行った.本実験では既存の研究より良い結果が得られ,手法の汎用性が検証可能となり,ジャーナル論文をまとめている.
The optimization method is to determine whether the design is correct or not. There are many problems in reality, and there are many uncertain elements in the problem. The uncertainty factor is considered deeply, the prediction value is determined, the input force is determined, the existing optimization method is applied, and the solution is obtained. The input force is changed, the solution is affected, and the function is greatly regretted. This study proposes a method for solving this problem. In 2016, we generalized this problem to multiple optimization problems. Multi-element problems are NP hard problems, accumulation problems, capital planning problems, numerical problems, social optimization problems, formalized problems, results, and very important problems. Multi-element optimization method for solving multi-element problem (iterative phase substitution method) Each time, the upper bound and the lower bound of the optimal value are obtained. The results of the domestic conference were presented. The basic method of determining the performance of the system is the fixed method, the decomposition method and the basic branch method, and the results of the research are presented at the international conference. In addition, the iterative phase substitution method is proposed to be widely used in the study of optimization problems and set coverage problems. This paper is based on the existing research, good results and general applicability of the method.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
組合せ問題に対する min-max regret 基準のロバスト最適化
组合问题最小-最大遗憾准则的鲁棒优化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    呉偉;M. Iori;S. Martello;柳浦睦憲
  • 通讯作者:
    柳浦睦憲
A column generation approach to the airline crew pairing problem to minimize the total person-days
解决航空公司机组人员配对问题的列生成方法,以最大限度地减少总人日数
最大後悔最小化基準の多次元ナップサック問題に対する発見的解法
使用最大后悔最小化准则的多维背包问题的启发式解决方案
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    呉偉;M. Iori;S. Martello;柳浦睦憲
  • 通讯作者:
    柳浦睦憲
An Iterated Dual Substitution Approach for the Min-Max Regret Multidimensional Knapsack Problem
最小-最大遗憾多维背包问题的迭代对偶替换法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Wu;M. Iori;S. Martello;M. Yagiura
  • 通讯作者:
    M. Yagiura
University of Bologna/University of Modena and Reggio Emilia(Italy)
博洛尼亚大学/摩德纳和雷焦艾米利亚大学(意大利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

呉 偉其他文献

Feasible Home-Away Table Construction with Minimal Breaks and Team Assignment for Scheduling a Tournament
可行的主客场表构建,尽量减少休息时间和球队分配,以安排比赛

呉 偉的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('呉 偉', 18)}}的其他基金

摂動レベルと後悔の度合いを考慮した組合せ最適化問題に対するロバスト最適化
考虑扰动水平和后悔程度的组合优化问题的鲁棒优化
  • 批准号:
    21K14367
  • 财政年份:
    2021
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists

相似海外基金

解再構築型の組合せ最適化問題に対する計算容易性および計算困難性の解明
解重构型组合优化问题的可计算性和难度的阐明
  • 批准号:
    24K02902
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
現実に現れる組合せ最適化問題の暗黙知を反映するメタヒューリスティクスの開発
元启发法的发展反映了现实中出现的组合优化问题的隐性知识
  • 批准号:
    24K17472
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
組合せ最適化問題に対する解の唯一化における計算複雑さの研究
组合优化问题统一解的计算复杂度研究
  • 批准号:
    24K02898
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
多面体的手法と離散構造を用いた組合せ最適化問題の解法
使用多面体方法和离散结构解决组合优化问题
  • 批准号:
    24K02901
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
イジングマシンと古典計算機を併用した組合せ最適化ハイブリッドシステムの構築
使用伊辛机和经典计算机构建组合优化混合系统
  • 批准号:
    24KJ2102
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
不確実性をもつ組合せ最適化モデルに対する理論基盤の構築
为不确定性组合优化模型奠定理论基础
  • 批准号:
    23K21646
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
エンドツーエンド組合せ最適化に向けた基礎理論の構築
建立端到端组合优化的基础理论
  • 批准号:
    24K14844
  • 财政年份:
    2024
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
汎化性能を高めた深層強化学習に基づく組合せ最適化法
提高泛化性能的基于深度强化学习的组合优化方法
  • 批准号:
    23K11263
  • 财政年份:
    2023
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
制約充足確率に基づく強化学習による組合せ最適化問題の解法に関する基礎的研究
基于约束满足概率的强化学习求解组合优化问题的基础研究
  • 批准号:
    22K12158
  • 财政年份:
    2022
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
行列集中不等式による組合せ最適化アルゴリズムの設計
利用矩阵浓度不等式的组合优化算法设计
  • 批准号:
    19K20212
  • 财政年份:
    2022
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了