Flow instabilities in intersecting geometries

相交几何形状中的流动不稳定性

基本信息

项目摘要

This year, the focus was on exploring high Reynolds number flow within the cross-slot geometry. Our experimental observations reveal that above a certain critical flow rate (Reynolds number, Re) the flow becomes unstable and a steady vortex flow appears. We discover that by changing the aspect ratio of the cross-section of the geometry and the Re, we can control the number of vortices that appear in the flow field and their structure. We suggested a model based on previous studied to describe the velocity and vorticity profiles of the central vortex. When increasing the Re to a critical value we observed that the flow becomes unsteady and periodic with characteristic frequencies that depends on the aspect ratio of the geometry and on the imposed Re. We have characterized and explained the different mechanisms that govern the periodic fluctuations that are observed in this flow type and our results are supported with numerical simulations done by our collaborators. The manuscript for this work is currently being prepared for submission.Additionally, at the PMMH lab at ESPCI, we studied the interaction between spherical particles (80 micrometers diameter polystyrene particles, 8% of channels width) and the vortex flow in the cross-slot geometry. Our observations reveal that for a Newtonian fluid the particles will be evenly distributed in the flow field, the particles swirl inside the vortical structure. When adding small amount of polymers, the particles will flow around the vortex and will not be able to swirl through the vortical structure.
今年的重点是探索交叉缝隙几何形状内的高雷诺数流动。我们的实验观察表明,超过一定的临界流量(雷诺数,Re),流动变得不稳定,出现稳定的涡流。我们发现,通过改变几何形状和Re的横截面的长宽比,我们可以控制流场中出现的涡旋的数量及其结构。在前人研究的基础上,我们提出了一个模型来描述中心涡的速度和涡度分布。当Re增大到某一临界值时,我们观察到流动变得非定常和周期性,其特征频率取决于几何形状的长径比和外加的Re。我们已经刻画并解释了支配在这种流动类型中观察到的周期波动的不同机制,我们的结果得到了我们合作者所做的数值模拟的支持。这项工作的手稿目前正在准备提交。此外,在ESPCI的PMMH实验室,我们研究了球形颗粒(直径80微米的聚苯乙烯颗粒,8%的通道宽度)与交叉缝隙几何图形中的涡流之间的相互作用。我们的观察表明,对于牛顿流体,颗粒将均匀分布在流场中,颗粒在涡旋结构中旋转。当加入少量聚合物时,颗粒将绕着涡流流动,而不能在涡流结构中旋转。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the parameter space around an inertial flow instability at a stagnation point
探索驻点惯性流不稳定性周围的参数空间
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Motoki K;Saito T;Nouchi R;Kawashima R;Sugiura M.;元木康介;Noa Burshtein
  • 通讯作者:
    Noa Burshtein
Elastic modifications of an inertial instability in a 3D cross-slot
  • DOI:
    10.1016/j.jnnfm.2018.02.002
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    K. Zografos;N. Burshtein;A. Shen;S. Haward;R. Poole
  • 通讯作者:
    K. Zografos;N. Burshtein;A. Shen;S. Haward;R. Poole
Calming a storm: Controlling formation and intensity of a micro-typhoon
平息风暴:控制微台风的形成和强度
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    元木康介;杉浦元亮;川島隆太;Noa Burshtein
  • 通讯作者:
    Noa Burshtein
Inertioelastic instability at a stagnation point
驻点处的惯性弹性不稳定性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Motoki K;Sugiura M.;Noa Burshtein;元木康介;Noa Burshtein;元木康介;Noa Burshtein;元木康介;Noa Burshtein
  • 通讯作者:
    Noa Burshtein
Effect of fluid elasticity on vortex formation in a planar elongational flow field
流体弹性对平面伸长流场中涡形成的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Motoki K;Sugiura M.;Noa Burshtein;元木康介;Noa Burshtein;元木康介;Noa Burshtein;元木康介;Noa Burshtein;元木康介;Noa Burshtein
  • 通讯作者:
    Noa Burshtein
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BURSHTEIN Noa Batia其他文献

BURSHTEIN Noa Batia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
  • 批准号:
    569540-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Zero vorticity strength 3-point vortex dynamics
零涡强度 3 点涡动力学
  • 批准号:
    563611-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Visualization of quantum turbulence and vortex dynamics in superfluid helium
超流氦中量子湍流和涡旋动力学的可视化
  • 批准号:
    2489090
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Interaction of Vortex Filaments -Towards a Deeper Understanding of Vortex Dynamics-
涡旋细丝的相互作用 -深入了解涡旋动力学 -
  • 批准号:
    20K14348
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum vortex dynamics in exotic superfluid systems
奇异超流体系统中的量子涡动力学
  • 批准号:
    20K14376
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Real time observation of vortex dynamics using microwave microscope
使用微波显微镜实时观察涡旋动力学
  • 批准号:
    20K20891
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Spin vortex dynamics in a ferromagnetic superfluid
铁磁超流体中的自旋涡动力学
  • 批准号:
    DP200102239
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Projects
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了