Brittle-to-ductile transition in tungsten single and polycrystals: Microsturcture and failure mechanisms

钨单晶和多晶的脆性转变:微观结构和失效机制

基本信息

项目摘要

The microstructure plays a decisive role for the failure mode and the resulting fracture toughness of all brittle materials and particularly for brittle metals. Grain boundaries are easy fracture paths and serve as obstacles and sources for dislocations at the same time. In a similar way a pre-existing dislocation microstructure will have a pronounced influence on crack-tip plasticity and fracture toughness. A detailed understanding of all these micro-mechanisms contributing to deformation and fracture is therefore required to better control materials response with respect to fracture and the BDT. Because of the availability of detailed studies of single crystalline tungsten this material is chosen as out model material. In the proposed research project the brittle and ductile failure mechanisms of tungsten will be investigated in a combined experimental and modeling effort. The projects starts from a solid understanding of fracture in tungsten single crystals that has been developed in the literature in the last decades, and to which the applicants contributed significantly. The new research initiative to investigate polycrystalline materials and materials with a pre-existing dislocation microstr-ucture is a Konsequent step towards making the knowledge gained on single crystals applicable in a technological framework. At the same time there is a number of unsolved questions of great fundamental interest. For example: How are cracks initiated in the absence of brittle inclusions; Which role do grain boundaries or pre-existing dislocation forests play in this process; Does the initiation process decide whether predominantly interor transgranular fracture occurs? The main objektive of this project is the development of qualitative understanding and a quantitative description of the deformation and damage mechanisms in tungsten (single and) polycrystals. Theoretical and experimental investigations on atomic, mesoscopic and macroscopic length and time scales are required for an understanding of the influence of microstructure on the transition from brittle to ductile failure. The project relies on a combination of multiscale modeling and experimental work, because only the mutual guidance both approaches provide in designing new experiments and simulations holds the promise for a successful research project. Moreover experimental verification of simulation results and validation of critical input pararneters for empirical models are essential for the progress in modeling. The development of a physically motivated quantitative description of fracture toughness and the brittle-to-ductile transition in tungsten polycrystals is a goal that is attraktive from fundamental as well as from applied aspects. Based on the state of knowledge in the literature and the experience of our team this goal seems now to be within reach.
显微组织对所有脆性材料,特别是脆性金属的失效模式和由此产生的断裂韧性起着决定性作用。晶界是容易断裂的路径,同时也是位错的障碍和来源。以类似的方式,预先存在的位错微观结构将对裂纹尖端塑性和断裂韧性具有显著的影响。因此,需要详细了解所有这些有助于变形和断裂的微观机制,以更好地控制材料对断裂和BDT的响应。由于单晶钨的详细研究的可用性,这种材料被选为模型材料。在拟议的研究项目中,钨的脆性和韧性破坏机制将在实验和建模相结合的努力进行调查。这些项目始于对钨单晶断裂的深刻理解,这是过去几十年来在文献中发展起来的,申请人对此做出了重大贡献。研究多晶材料和具有预先存在的位错显微结构的材料的新研究计划是使单晶体知识适用于技术框架的重要一步。与此同时,还有一些具有重大根本利益的问题尚未解决。举例来说:在没有脆性夹杂物的情况下,裂纹是如何产生的?晶界或预先存在的位错森林在这个过程中起什么作用?裂纹的产生过程是否决定了主要发生的是晶内断裂还是穿晶断裂?该项目的主要目标是发展对钨(单晶和)多晶体中变形和损伤机制的定性理解和定量描述。原子,介观和宏观的长度和时间尺度上的理论和实验研究是需要理解的微观结构的影响从脆性到韧性破坏的过渡。该项目依赖于多尺度建模和实验工作的结合,因为只有这两种方法在设计新的实验和模拟时提供的相互指导才有希望成为一个成功的研究项目。此外,模拟结果的实验验证和经验模型的关键输入参数的验证是必不可少的建模的进展。物理驱动的断裂韧性的定量描述和钨多晶体的脆韧性转变的发展是一个目标,是吸引人的基础,以及从应用方面。根据文献中的知识和我们团队的经验,这一目标现在似乎是可以实现的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Hartmaier其他文献

Professor Dr. Alexander Hartmaier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Hartmaier', 18)}}的其他基金

Mechanisms of brittle-ductile transition and material removal in diamond cutting of silicon carbide
金刚石切削碳化硅脆塑转变及材料去除机制
  • 批准号:
    392230176
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Nachwuchsakademie "Materialwissenschaft, Werkstofftechnik, Charakterisierung, Simulation und Umformtechnik"
初级学院“材料科学、材料技术、表征、模拟和成型技术”
  • 批准号:
    217560764
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Workshops for Early Career Investigators

相似海外基金

Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
  • 批准号:
    23H01295
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Wire Arc Additive Manufacturing of Molybdenum Alloys for High-temperature Applications: Residual Stresses and Porosity Considering Ductile-to-brittle Transition Temperature
职业:用于高温应用的钼合金的电弧增材制造:考虑延性到脆性转变温度的残余应力和孔隙率
  • 批准号:
    2141905
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Strain localization processes at the brittle-ductile transition: an investigation of the mid-to-upper crust
脆韧转变时的应变局部化过程:中上地壳的研究
  • 批准号:
    535263-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Probing The Ductile-To-Brittle Transition in BCC Blanket Alloys
探究 BCC 毯状合金中的延性到脆性转变
  • 批准号:
    2625247
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigation of the Room Temperature Brittle-to-Ductile Transition of Single-Crystal Silicon at Sub-Micron Length Scale Using Accelerated Molecular Dynamics
利用加速分子动力学研究亚微米长度尺度单晶硅的室温脆性转变
  • 批准号:
    1940614
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Strain localization processes at the brittle-ductile transition: an investigation of the mid-to-upper crust
脆韧转变时的应变局部化过程:中上地壳的研究
  • 批准号:
    535263-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Strain localization processes at the brittle-ductile transition: an investigation of the mid-to-upper crust
脆韧转变时的应变局部化过程:中上地壳的研究
  • 批准号:
    535263-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Toughness enhancement of transparent acrylic glass using photo-induced brittle-ductile transition
利用光诱导脆韧转变增强透明丙烯酸玻璃的韧性
  • 批准号:
    19K05613
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of pore pressure change in brittle-ductile transition to earthquake cycles
脆塑转变过程中孔隙压力变化对地震循环的影响
  • 批准号:
    19K04038
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Research on the mechanical behavior of brittle-ductile transition of the granitic crust and crstal strength
花岗质地壳脆塑转变力学行为及晶体强度的实验研究
  • 批准号:
    18H01297
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了