深層学習エッジコンピューティングによる高効率なIoT向け脳―機械デバイスの開発

使用深度学习边缘计算开发用于物联网的高效脑机设备

基本信息

  • 批准号:
    21K12789
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

上下肢に機能障害を抱えるような要介護者にとって居住環境の快適性とQOLには密接な関係がある。家電製品や機械を脳活動のみの情報で制御するブレイン・マシン・インタフェース (BMI) を介護現場で活用することにより、要介護者の行動制約の緩和やストレスの軽減が期待でき、かつ、介護職従事者の仕事量を減らすことになる。本研究では、長時間使用可能・応答遅延を最小限に抑えられるBMIをIoT向けエッジデバイス (IoT-Dev) 上で実現する。要介護者への負担をより小さくするため、想起のみで脳活動の識別が可能となる運動イメージによる運動誘発電位 (MI: Motor Imagery) を用いることで、より実用的なデバイス開発を目指す。当該年度においては、利用者の負担を軽減するため、BCI Competition IV- 2a運動想起脳波データセットを用いて事前学習した結果を用いてファインチューニングを行い、その訓練データ数と分類精度の最適化を実施した。ターゲットの被験者以外の8名の被験者のデータで事前に学習した結果をターゲットの被験者の学習に活用してファインチューニングを行う事 (Subject Transfer) でファインチューニングを行わずターゲットの被験者のみの脳波データで学習した場合 (Self Training) と比べて分類精度は平均で5.26%向上し、全体の平均で約80.0%となった。また、分類精度の上昇が飽和する訓練データ数を平均で47.92%削減できる事が示された。
Upper and lower limb functional impairment, protection, rapidity of living environment, QOL, close connection Home appliances, machinery, activities, information control, mediation, site use, mediation, action control, mitigation, expectation reduction, mediation, workload reduction. This study is based on a minimum of BMI and IoT (IoT-Dev) for long-term use. The burden on the mediator is small, the recognition of the activity is possible, the Motor Imagery is used, and the development of the activity is indicated. BCI Competition IV- 2a is designed to reduce the user's burden during the year and to optimize the number of training and classification accuracy. 8 of the subjects except the subject were trained in advance, and the results were used in the study of the subject (Subject Transfer). The classification accuracy was 5.26% on average, and 80.0% on average. The increase in classification accuracy resulted in an average of 47.92% reduction in the number of training samples.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Electrooculography on Electroencephalography Classifying Accuracy in Deep Learning and Reducing Number of Channels in Motor-Imagery Brain-Computer Interface
眼电图对深度学习中脑电图分类准确性和减少运动想象脑机接口通道数量的影响
High Accuracy Silent Speech BCI Using Compact Deep Learning Model for Edge Computing
使用紧凑型深度学习模型进行边缘计算的高精度无声语音 BCI
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小林 伸彰其他文献

小林 伸彰的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ハイパースペクトラルイメージングと深層学習を用いた皮膚病変鑑別システムの開発
利用高光谱成像和深度学习开发皮肤病变判别系统
  • 批准号:
    24K15777
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
深層学習を用いた超音波画像からのSPIDDM診断支援システムの開発
使用深度学习从超声图像开发 SPIDDM 诊断支持系统
  • 批准号:
    24K15775
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
深層学習を用いた拡散テンソル画像による腰椎疾患における疼痛の自動診断システム
基于深度学习的弥散张量图像腰椎疾病疼痛自动诊断系统
  • 批准号:
    24K15787
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
幾何学的深層学習による非線形力学系のグレーボックスモデル化技術の創出
使用几何深度学习创建非线性动力系统灰盒建模技术
  • 批准号:
    24K15105
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アナログ回路に基づく進化計算手法による深層学習モデルの最適化
基于模拟电路的进化计算方法优化深度学习模型
  • 批准号:
    24K15115
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ダイナミクス情報を考慮した深層学習技術による天然変性タンパク質複合体構造予測
使用深度学习技术考虑动力学信息预测自然变性蛋白质复合物的结构
  • 批准号:
    24K15183
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地域連携プログラミング初等教育における深層学習やVRを用いた対話的学習支援システム
区域协作编程 在基础教育中使用深度学习和 VR 的交互式学习支持系统
  • 批准号:
    24K15230
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
深層学習とドローンを用いた温室トマトの株毎の生育データモニタリングシステム
使用深度学习和无人机的每个温室番茄植株的生长数据监测系统
  • 批准号:
    24K15072
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了