p進微分方程式の解の対数的増大度を駆使した数論幾何学における新手法

充分利用p进微分方程解的对数增长的算术几何新方法

基本信息

  • 批准号:
    22K03227
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

本年度は、p進微分方程式のsingularityとgeneric radii of convergenceとの関係を研究した。具体的には、以下の問題を考察した。混標数(0,p)を持つrationalなcomplete nonarchimedean differential field Fが与えられたとき、F上の``有界な''開円板上``regular singular''なfinite differential module Mを考える。もう少し具体的に書くと、Mは適当な非アルキメデス環R上finite freeであり、log derivationの作用をもつものである。Mに対し、MをRを適切な付値で完備化したものに関し係数拡大することにより、Kedlayaの定義した、subsudiary generic radii of convergenceという不変量をとることにより、あるpolygonをえることができる。これは、都築、松田の結果により、このpolygonのslopeは、Mがregular singularityであるという事実を反映して、適当な評価ができると期待される。本年度は、twisted polynomialのlog variant、および、subsudiary generic radii of convergenceのlog variantを構成し、logなしとlog variantとの比較をし、slopeの評価を具体的に与えた。
This year, the relationship between singularity and genericity of differential equations is studied. The specific problems are discussed below. The mixed standard number (0,p) is a rational <$complete nonarchimedean differential field F and a ``regular single''<$finite differential module M on the `` bounded '' open board on F.もう少し具体的に书くと、Mは适当な非アルキメデス环R上finite freeであり、log derivationの作用をもつものである。M is the most appropriate. The results of this project are reflected in the results of the project, and the results of the project are reflected in the results of the project. This year, the log variant of twisted polynomial, the derivative radical of convergence, the log variant, the slope, the evaluation, the specific, the derivative radical of convergence, the derivative derivative

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A note on the variation of the subsidiary radii of convergence of p-adic differential equations in the regular singular case
关于正则奇异情况下p进微分方程辅助收敛半径变化的注解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Ohkubo
  • 通讯作者:
    Shun Ohkubo
A note on the convergence Newton polygons of p-adic differential equations in the regular singular case
关于正则奇异情况下p进微分方程牛顿多边形收敛性的注记
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shun Ohkubo;Shun Ohkubo
  • 通讯作者:
    Shun Ohkubo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

大久保 俊其他文献

大久保 俊的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('大久保 俊', 18)}}的其他基金

p進Hodge理論の高次元化
p-adic Hodge 理论的更高维度
  • 批准号:
    12J09128
  • 财政年份:
    2012
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
p進表現とp進微分方程式の分岐理論
p-adic表示和p-adic微分方程的分岔理论
  • 批准号:
    10J06817
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Why and how did the endangered/threatened species increase in number after the Great East Japan Earthquake and the associated Tsunami? : an analysis for semi-terrestrial crabs.
东日本大地震和相关海啸之后,濒危/受威胁物种的数量为何以及如何增加?
  • 批准号:
    22K06406
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了