Long-term behavior of stochastic models on lattices with spatio-temporal interactions
具有时空相互作用的格子上随机模型的长期行为
基本信息
- 批准号:22K03333
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
研究計画に従って時間的・空間的に相互作用をもつ確率モデルの研究を進めた.その結果,(1) ファーストパッセージパーコレーション問題における極限定理,(2) 記憶のあるランダムウォークに対する極限定理,(3) 記憶のあるランダムウォークの極限定理を応用した至る所微分不可能な連続関数の性質の研究について新たな知見を蓄積することができた.特に,(2)のテーマについて得られた成果について述べる.Elephant random walk with stopsは,"step-reinforcement"と呼ばれる仕組みにより推移確率が変動する離散時間ランダムウォークであり,左右の隣接点に移動する他,その場で留まることも許したものである.「その場で留まる」確率rを固定したときに,記憶と同じ向きに進む度合いを表すもうひとつのパラメータpに応じて3つの異なる相が生じるが,r>0の場合,r=0である通常のelephant random walkとは量的にも質的にも異なる極限挙動を示すことがBercu (2022)等によって示されている.横浜国立大学の秋元達哉氏・谷口恵祐氏と共同で,r>0の場合の長時間挙動を記述する極限定理について研究した.時刻nまでに訪問した点の総数の増大度について研究し,r,pに応じて多様な挙動が生じることを示した.また,r>0の場合に時刻nまでにウォーカーが移動した回数と時刻nでのウォーカーの位置の相関係数について調べ,ある種の特別な状況を除いてはpに応じてn→∞での挙動に3つの異なる様相が見られることを証明した.この成果を論文としてとりまとめているところである.
In the study of the interaction between space and time, the accuracy rate is improved. The results are as follows: (1) do not know how to solve the problem of health problems, and (2) record the limit theorem of health problems. (3) to record the limit theorem of the number of links that are not possible by using the theory of limit. (3) to learn that it is not possible to change the number of data. (3) to record the limit theorem of the limit theorem. (3) record the limit theorem of the limit theorem of the number of data that is not possible. The "step-reinforcement" system calls on the staff to make sure that the rate of movement is increased, the time for the movement of the train is changed, the contact on the left and the right is moved, and the contact on the left and the right is moved, and the number of employees is retained. Record the same level of progress in the same way as in the same way as in the same table. This is the same as that in the table. This is the same as that in the same table. This is the same as the progress in the table. This is the same as the progress in the table. This is the same as that in the table. This is the same as the progress in the same direction. This is the same as the progress in the table. This is the same as that in r>. At the end of the day, there is a general limit on the number of elephant random walk tickets, such as Bercu (2022). Yokohama National University, Taniguchi, Yokohama 0: 00 hours of long-term activity record limit Theorem for the study of tracks. at the moment, the number of points is much larger than that of the study, and the number of points is much larger than that of the study. at the same time, the number of points is much higher than that in the study of the number of points, and the number of points. At the end of the day, you need to change the number of calls. when you are in the same time as you are in the same position, you need to know that you are in the same position as you are in the same time as you are in the same time as you are in the same situation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bernoulli first-passage percolationにおける極限形状の比較
伯努利首道渗流极限形状比较
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shoot Osaka;Masato Takei;竹居正登;竹居正登;竹居正登
- 通讯作者:竹居正登
Comparison of limit shapes for Bernoulli first-passage percolation
伯努利首道渗流极限形状比较
- DOI:10.1142/s2661335222500058
- 发表时间:2022
- 期刊:
- 影响因子:0.2
- 作者:Kubota Naoki;Takei Masato
- 通讯作者:Takei Masato
Rate of moment convergence in the central limit theorem for the elephant random walk
大象随机游走中心极限定理的矩收敛率
- DOI:10.1088/1742-5468/acb265
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hayashi Masafumi;Oshiro So;Takei Masato
- 通讯作者:Takei Masato
Elephant random walkに対する極限定理
大象随机游走的极限定理
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shoot Osaka;Masato Takei;竹居正登
- 通讯作者:竹居正登
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
竹居 正登其他文献
竹居 正登的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
干渉・拡散効果を評価するためのパーコレーションと統計的因果推論の融合技術の開発
开发结合渗透和统计因果推断的技术来评估干扰和扩散效应
- 批准号:
22KJ1410 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
磁束運動パーコレーションを用いた計算デバイスの基本原理確立
利用磁通量运动渗透建立计算装置的基本原理
- 批准号:
22K18812 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
階層性多孔構造形成過程のTEM in-situ観察で解明するガラスのミクロ構造
通过 TEM 原位观察分级多孔结构形成过程阐明玻璃微观结构
- 批准号:
22H02171 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantitative research on stochastic processes in random media
随机介质中随机过程的定量研究
- 批准号:
21K03286 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic metamaterials created by high-energy heavy ion irradiation, and topological magnonics
高能重离子辐照产生的磁性超材料和拓扑磁子学
- 批准号:
21H04643 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Relation between fractality and degree correlation in complex networks
复杂网络中分形与度相关性的关系
- 批准号:
21K13853 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring Conformal Spectrum in Non-Unitary Statistical Model
探索非酉统计模型中的共形谱
- 批准号:
20K03796 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Heat Transfer Model for Connected Space Using Percolation Theory
利用渗流理论开发连通空间传热模型
- 批准号:
20K20971 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Formation of percolation structure in metals and and innovation of manufacturing methods for stretchable conductive materials
金属渗流结构的形成及可拉伸导电材料制造方法的创新
- 批准号:
20K21127 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Multifaceted analysis of microdynamics of invasion and drainage processes in porous media effected by hydrophobic particles
疏水颗粒影响多孔介质侵排过程微观动力学多层面分析
- 批准号:
20H03100 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




