Surface PDE: a minimizing movement approach
表面 PDE:最小化运动方法
基本信息
- 批准号:22K03440
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our research focused on developing minimizing movments for surface-constrained partial differential equations. The corresponding approximation methods were successfully realized by incorporating the closest point method into a functional minimization scheme.Using our surface-type minimizing movements, we were able to effectively simulate mean curvature flow and hyperbolic mean curvature flow of interfaces on surfaces. These methods represent generalizations of the MBO (Merriman, Bence, and Osher) and HMBO (Hyperbolic Merriman, Bence, and Osher) algorithms, specifically tailored for the surface-constrained setting.In addition, we designed a surface-constrained signed distance vector field (SDVF) for describing phase geometries on surfaces in multiphase settings. We further implemented the numerical algorithms that enable the application of the SDVF to computational problems.Regarding our approximation method that combines the closest point method and minimizing movements, numerical error analyses were conducted for the heat and wave equations on surfaces, under various conditions. Convergence of our surface-type minimizing movement, with respect to the spatial discretization, was also examined. Our the results revealed that the numerical solution converges to the exact solution.
我们的研究重点是开发最小化表面约束偏微分方程的运动。通过将最接近点的方法纳入功能最小化方案中,成功实现了相应的近似方法。使用表面型最小化运动,我们能够有效地模拟表面上界面的平均曲率流量和双曲线平均曲率流量。 These methods represent generalizations of the MBO (Merriman, Bence, and Osher) and HMBO (Hyperbolic Merriman, Bence, and Osher) algorithms, specifically tailored for the surface-constrained setting.In addition, we designed a surface-constrained signed distance vector field (SDVF) for describing phase geometries on surfaces in multiphase settings.我们进一步实施了使SDVF应用于计算问题的数值算法。在各种条件下,对表面上的热量和波动方程进行了数值误差分析,以将最接近点方法和最小化的运动结合起来。还检查了我们的表面类型的收敛性最大程度地减少有关空间离散化的运动。我们的结果表明,数值解决方案会收敛到精确解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the construction of minimizing movements for surface PDE
表面偏微分方程最小化运动的构造
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:T. Muramatsu;E. Ginder
- 通讯作者:E. Ginder
Applications of the closest point method for surface PDE
最近点法在曲面偏微分方程中的应用
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Y. Ote;E. Ginder
- 通讯作者:E. Ginder
Numerical analysis and application of the signed distance vector field
带符号距离矢量场的数值分析及应用
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:I. Aoki;E. Ginder
- 通讯作者:E. Ginder
Numerical analysis and application of minimizing movements for hyperbolic problems
双曲线问题最小化运动的数值分析及应用
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:R. Sakai;E. Ginder
- 通讯作者:E. Ginder
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ginder Elliott其他文献
A variational approach to volume-constrained membrane motions
体积受限膜运动的变分方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Svadlenka Karel;Ginder Elliott;Omata Seiro;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder - 通讯作者:
Elliott Ginder
Conformal field theory for C2-cofinite vertex algebras
C2-余有限顶点代数的共形场论
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Svadlenka Karel;Ginder Elliott;Omata Seiro;Hiroaki Nakamura;岩瀬則夫;橋本義武 - 通讯作者:
橋本義武
Monodromy of elliptic curves and Mordell transformations in Grothendieck-Teichmueller theory
Grothendieck-Teichmueller 理论中椭圆曲线的单向性和 Mordell 变换
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Svadlenka Karel;Ginder Elliott;Omata Seiro;Hiroaki Nakamura - 通讯作者:
Hiroaki Nakamura
On the hyperbolic BMO algorithm
关于双曲BMO算法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Svadlenka Karel;Ginder Elliott;Omata Seiro;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder - 通讯作者:
Elliott Ginder
A minimizing movement approach to constrained distributed parameter systems
约束分布参数系统的最小化运动方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Svadlenka Karel;Ginder Elliott;Omata Seiro;Elliott Ginder;Elliott Ginder;Elliott Ginder;Elliott Ginder - 通讯作者:
Elliott Ginder
Ginder Elliott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ginder Elliott', 18)}}的其他基金
Hyperbolic threshold dynamics: applications and analysis
双曲阈值动力学:应用与分析
- 批准号:
17K14229 - 财政年份:2017
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Interfacial and Free-Boundary Dynamics of Active Matter
活性物质的界面和自由边界动力学
- 批准号:
15KT0099 - 财政年份:2015
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A variational approach to the modeling and analysis of droplet and bubble motions
液滴和气泡运动建模和分析的变分方法
- 批准号:
25800087 - 财政年份:2013
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Study of problems in calculus of variations, differential equations, and other areas involving minimizing movements
研究变分、微分方程和其他涉及最小化运动的领域中的问题
- 批准号:
19540212 - 财政年份:2007
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of evolution equations from the aspects of the theory of minimizing movements
从最小化运动理论研究演化方程
- 批准号:
16540186 - 财政年份:2004
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)