Study of evolution equations from the aspects of the theory of minimizing movements

从最小化运动理论研究演化方程

基本信息

  • 批准号:
    16540186
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Minimizing movement is proposed by De Giorgi which is based on theories used in the studies of partial differential equations and mean curvature flows. This research was projected in order to investigate the problems which appear in the following studies: (A) Study of minimizing movements in mathematical physics and geometry, (B) Study of minimizing movements associated with second order quasilinear hyperbolic partial differential equations. In the first year Seminar on Partial Differential Equations and Its Applications was held at Pukyong National University, Pusan, Korea, and, head investigator attended this conference, announced his recent result and gathered information. Besides, during the term of the project the head investigator and other investigators attended vari-ous conferences and discussed with specialists in related research areas. Thereby following research results are obtained. The most progresses are obtained in Study (B). It has been expected that ap-plication by minimizing movement method is equivalent to Yosida approximation, however the head investigator presents an example and shows that they are different from each other. Furthermore this example is also an example of a minimizing movement which does not satisfy energy conser-vation law. The equation which appears in the example does not satisfy uniqueness of a solution and hence it also turns out that uniqueness is not important in existence of a minimizing movement. Namely, this research has obtained important but negative facts. Probably structures of minimiz-ing movements associated with second order quasilinear hyperbolic partial differential equations are much more complicated than one expects at first. Some facts related to Study (A) are also obtained. However, the results seem to be the halfway stage and the future investigations are expected.
最小化运动由 De Giorgi 提出,它基于偏微分方程和平均曲率流研究中使用的理论。本研究旨在调查以下研究中出现的问题:(A)数学物理和几何中最小化运动的研究,(B)最小化与二阶拟线性双曲偏微分方程相关的运动的研究。第一年偏微分方程及其应用研讨会在韩国釜山国立釜庆大学举行,首席研究员出席了这次会议,宣布了他的最新成果并收集了信息。此外,项目期间,首席研究员和其他研究人员参加了各种会议,并与相关研究领域的专家进行了讨论。从而得到以下研究结果。研究(B)取得了最大的进展。人们预计最小化运动方法的应用与 Yosida 近似等效,但首席研究员举了一个例子并表明它们彼此不同。此外,这个例子也是不满足能量守恒定律的最小化运动的例子。示例中出现的方程不满足解的唯一性,因此也证明唯一性在最小化运动的存在中并不重要。也就是说,这项研究获得了重要但负面的事实。与二阶拟线性双曲偏微分方程相关的最小化运动的结构可能比人们一开始预期的要复杂得多。还获得了与研究(A)相关的一些事实。然而,结果似乎已经进行了一半,未来的调查值得期待。

项目成果

期刊论文数量(82)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global solvability for systems of nonlinear wave equations with multiple speeds
多速度非线性波动方程组的全局可解性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edited by Toshiaki;Shoji;Masaki Kashiwara;Noriaki Kawanaka 他;Y. Shibata and S. Shimizu;Akira Hoshiga;Akira Hoshiga and Hideo Kubo
  • 通讯作者:
    Akira Hoshiga and Hideo Kubo
Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition
具有诺依曼边界条件的外域斯托克斯半群的衰变性质
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshihiro Shibata;Senjo Shimizu
  • 通讯作者:
    Senjo Shimizu
ミニマイジング・ムーブメント法による近似と吉田近似の違いについて
关于最小化移动法近似与吉田近似的区别
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koji;Kikuchi;菊地光嗣
  • 通讯作者:
    菊地光嗣
On the Stokes equation with Neumann boundary condition.
关于具有诺伊曼边界条件的斯托克斯方程。
Non-collision periodic solutions of prescribed energy problem for a class of singular Hamiltonian systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIKUCHI Koji其他文献

KIKUCHI Koji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIKUCHI Koji', 18)}}的其他基金

Tumorigenesis triggered by the misregulation of cell polarity associated with cell cycle
与细胞周期相关的细胞极性失调引发的肿瘤发生
  • 批准号:
    24700980
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of evolution equations in the space of BV functions
BV函数空间演化方程的研究
  • 批准号:
    23540239
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tumorigenesis triggered by the misregulation of the Wnt signaling pathways in mitosis
有丝分裂中 Wnt 信号通路的失调引发肿瘤发生
  • 批准号:
    22700881
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of problems in calculus of variations, differential equations, and other areas involving minimizing movements
研究变分、微分方程和其他涉及最小化运动的领域中的问题
  • 批准号:
    19540212
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of gradient flow equations and Lagrange equations of action integrals associated to quasiconvex functionals
与拟凸泛函相关的梯度流方程和作用积分拉格朗日方程的分析
  • 批准号:
    14540202
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research in evolution equations related to variational problems
与变分问题相关的演化方程研究
  • 批准号:
    12640205
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
  • 批准号:
    RGPIN-2017-04313
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    CRC-2019-00415
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Canada Research Chairs
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
  • 批准号:
    RGPIN-2018-04536
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了