Exploring the functionality of Al-catalyzed Si nanowires

探索铝催化硅纳米线的功能

基本信息

  • 批准号:
    22K04885
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Al-catalyzed Si nanowires (NWs) formed by vapor-liquid-solid growth for high mobility field-effect transistor (HEMT) and photovoltaic cell applications were parallelly investigated. Successfully addressing the major challenge of rapid Al catalyst oxidation by ex-situ and uncomplicated growth conditions allows for the potential to scale up the process while preventing the formation of deep-level traps resulting from catalyst contamination.Al-catalyzed SiNWs grown on paper-thin polished and etched Si(111) wafers of 100 um- and 60 um-thick with high proficiency for minimizing interfacial defects and light absorption loss has been accomplished. Deep wet etching was observed as a simple technique for thin Si wafer preparation compared to the standard method of polishing by diamond slurry. Fabrication of thin Si NW solar cells with homojunction structure toward enhanced power conversion efficiency by hybrid nanostructures with Mn-doped CsPbCl3 perovskite nanocrystals using a simple drop-casting method has been optimized.Hole-gas accumulation of Si/Ge core-shell NW heterostructures using Al-catalyst for core SiNW synthesis was successfully demonstrated. Type-II band alignment of p-type Si and intrinsic Ge heterojunction has been designed for induced hole-gas accumulation in the Ge channel to suppress impurity and surface scattering. The unique characteristics of controllable vertical growth and smooth surface with automated Al doping in Al-catalyzed SiNWs grant major advantages for the application of vertical SiNW-based HEMT devices.
研究了气-液-固生长制备的铝催化硅纳米线(NWs)在高迁移率场效应晶体管(HEMT)和光伏电池中的应用。通过非原位和简单的生长条件,成功解决了Al催化剂快速氧化的主要挑战,从而有可能扩大该过程的规模,同时防止因催化剂污染而形成深层陷阱。al催化SiNWs生长在100 um和60 um厚度的纸张薄的抛光和蚀刻Si(111)晶圆上,具有最小化界面缺陷和光吸收损失的能力。与金刚石浆料抛光的标准方法相比,深湿蚀刻是一种简单的硅薄晶片制备技术。采用简单的滴铸法优化了以掺锰CsPbCl3钙钛矿纳米晶为杂化纳米结构制备具有均匀结结构的薄硅NW太阳能电池,以提高功率转换效率。用al催化剂成功地证明了硅/锗核壳NW异质结构的空穴-气富集。设计了p型Si和本征Ge异质结的ii型带对准,以诱导Ge通道中的空穴气体积聚,从而抑制杂质和表面散射。Al催化sinw的垂直生长可控和表面光滑的独特特性为垂直sinw基HEMT器件的应用提供了主要优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy transfer performances of nanocrystal quantum-dots for Si nanowire-based photovoltaic applications
用于基于硅纳米线的光伏应用的纳米晶体量子点的能量传输性能
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wipakorn Jevasuwan;Mohammed Abdelhameed;Mostafa F. A. Abdelbar;Naoki Fukata
  • 通讯作者:
    Naoki Fukata
Hybrid Nanostructures of Al-Catalyzed Si Nanowires and Mn-doped Perovskite CsPbCl3 Nanocrystals for Thin Si Nanowire-based Photovoltaic cells
用于薄硅纳米线光伏电池的铝催化硅纳米线和锰掺杂钙钛矿 CsPbCl3 纳米晶体的混合纳米结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wipakorn Jevasuwan;Bern Yu Jeco-Espaldon;Mostafa Abdelbar;Qinqiang Zhang;Mohammed Abdelhameed;Naoki Fukata
  • 通讯作者:
    Naoki Fukata
Energy Transfer Performances in Hybrid Nanostructures Using Si Nanowires and Nanocrystal Quantum-Dots for Photovoltaic Applications
用于光伏应用的使用硅纳米线和纳米晶体量子点的混合纳米结构的能量传输性能
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中敬佑;南畑孝介;若林里衣;神谷典穂;後藤雅宏;K. Fukutani;Wipakorn Jevasuwan and Naoki Fukata
  • 通讯作者:
    Wipakorn Jevasuwan and Naoki Fukata
Al-Catalyzed Si Nanowire Formation on Pre-Etched and Post-Polished Thin Si Substrates for Photovoltaic Application
用于光伏应用的预蚀刻和后抛光薄硅基板上铝催化硅纳米线的形成
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    関戸竜也;麻田俊雄;小関史朗;Wipakorn Jevasuwan and Naoki Fukata
  • 通讯作者:
    Wipakorn Jevasuwan and Naoki Fukata
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Wipakorn其他文献

Boron distributions in individual core-shell Ge/Si and Si/Ge heterostructured nanowires
单个核壳 Ge/Si 和 Si/Ge 异质结构纳米线中的硼分布
  • DOI:
    10.1039/c6nr04384d
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    B. Han;Y. Shimizu;J. Wipakorn;K. Nishibe;Y. Tu;K. Inoue;N. Fukata;Y. Nagai
  • 通讯作者:
    Y. Nagai
Fuel particle balance for steady state operation on all-metal fusion experimental device, QUEST.
全金属聚变实验装置 QUEST 上稳态运行的燃料颗粒平衡。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Han;Y. Shimizu;J. Wipakorn;K. Nishibe;Y. Tu;K. Inoue;N. Fukata;Y. Nagai;K.Hanada,N.Yoshida,M.Hasegawa,A.Hatayama,K.Okamoto,I.Takagi,Y.Oya,M.Miyamoto,M.Oya,T.Shikama,A.Kuzmin,Z.X.Wang,H.Long,S.Kojim,H.Idei,Y.Nagashima,K.Nakamura,O.Watanabe,T.Onchi,H.Watanabe,K.Tokunaga,A.Higashijima,S.Kawasaki,H.Nakashima,T.Nagata,S.Shimabukur
  • 通讯作者:
    K.Hanada,N.Yoshida,M.Hasegawa,A.Hatayama,K.Okamoto,I.Takagi,Y.Oya,M.Miyamoto,M.Oya,T.Shikama,A.Kuzmin,Z.X.Wang,H.Long,S.Kojim,H.Idei,Y.Nagashima,K.Nakamura,O.Watanabe,T.Onchi,H.Watanabe,K.Tokunaga,A.Higashijima,S.Kawasaki,H.Nakashima,T.Nagata,S.Shimabukur

J. Wipakorn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
  • 批准号:
    10750025
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
Evolution of nanostructure and properties in nuclear graphite with irradiation damage
辐照损伤下核石墨纳米结构和性能的演变
  • 批准号:
    2889672
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Studentship
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
  • 批准号:
    10567076
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
  • 批准号:
    BB/X012557/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Research Grant
Linking formation mechanisms, nanostructure and function in metal oxide nanosheets using multimodal characterisation.
使用多峰表征将金属氧化物纳米片的形成机制、纳米结构和功能联系起来。
  • 批准号:
    EP/W026937/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Research Grant
Effect of mechanical properties and surface nanostructure on phosphate-based glasses biomedical performance
机械性能和表面纳米结构对磷酸盐基玻璃生物医学性能的影响
  • 批准号:
    2845244
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Studentship
Nanostructure transfer to cell membrane by cytoplasmic gelation and its optical sensor application
细胞质凝胶化纳米结构转移至细胞膜及其光学传感器应用
  • 批准号:
    22K18760
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
  • 批准号:
    RGPIN-2020-06035
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Discovery Grants Program - Individual
First-principles design of spin conversion materials by nanostructure prediction
通过纳米结构预测第一性原理设计自旋转换材料
  • 批准号:
    22K04862
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了