Quantifying Confidence for Computer-Intensive Classifiers
量化计算机密集型分类器的置信度
基本信息
- 批准号:69260416
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2008
- 资助国家:德国
- 起止时间:2007-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classification is about prediction a class label Y with finitely many potential values from a vector X of covariables. Traditionally this amounts to choosing a classifier or estimating the conditional distributions of Y given X = x based on a set of training observations. To quantify the confidence for each instance (i.e. future observation X with unknown class membership Y ), one can also use certain p-values to provide a set of plausible class labels. One advantage of the latter approach is that prior information about the different classes’ probability isn’t needed, and there are nonparametric procedures based on permutation tests which are valid under minimal assumptions. In the present project, the latter methods are extended in various directions, in particular: (i) The underlying classifiers should be moderately robust which necessitates computationally feasible procedures. Recent progress in multivariate M-estimation will be helpful in this respect. (ii) Given the success of support vector machines and other large margin classifiers in combination with complexity penalties, it is desirable to develop corresponding p-values. A major conceptual problem will be the data-driven choice of tuning parameters. (iii) We want to develop general theory for the asymptotic properties of these methods when both the sample size and the dimension of X are growing.
分类是关于从协变量的向量X中预测具有许多潜在值的类标签Y。传统上,这相当于选择一个分类器或基于一组训练观察值来估计给定X = x的Y的条件分布。为了量化每个实例的置信度(即具有未知类成员Y的未来观测X),还可以使用某些p值来提供一组合理的类标签。后一种方法的一个优点是不需要关于不同类别概率的先验信息,并且存在基于排列检验的非参数过程,其在最小假设下是有效的。在本项目中,后一种方法在各个方向上扩展,特别是:(i)底层分类器应该适度稳健,这需要计算上可行的程序。多元M-估计的最新进展将有助于这方面的工作。(ii)考虑到支持向量机和其他大间隔分类器的成功与复杂性惩罚的结合,需要开发相应的p值。一个主要的概念性问题是数据驱动的调优参数选择。(iii)我们希望发展一般理论的渐近性质,这些方法时,样本量和尺寸的X都在增长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Lutz Dümbgen其他文献
Professor Dr. Lutz Dümbgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Lutz Dümbgen', 18)}}的其他基金
Regularisation and Qualitative Assumptions in Multivariate Density Estimation
多元密度估计中的正则化和定性假设
- 批准号:
69199552 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Units
Confidence sets and data analytical tools for interval-censored observations
用于区间删失观测的置信集和数据分析工具
- 批准号:
5177220 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Increasing confidence in Australian carbon disclosures
增强对澳大利亚碳披露的信心
- 批准号:
DP240100414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Drive with Confidence: A Safe and Secure Driving System to Mitigate Remote Vehicle Hijacking Risks
放心驾驶:安全可靠的驾驶系统,可降低远程车辆劫持风险
- 批准号:
10077064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An Empirical Study of the Determinants and Consequences of Citizens' Confidence in the Armed Forces
公民对武装部队信心的决定因素及其后果的实证研究
- 批准号:
23KJ2013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
- 批准号:
10612611 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development and testing of a tool to assess health workers' clinical confidence to provide perinatal bereavement care in Sub-Saharan Africa
开发和测试工具来评估卫生工作者在撒哈拉以南非洲地区提供围产期丧亲护理的临床信心
- 批准号:
MR/X004082/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
A novel mobile application improves balance confidence in walking aid users
新颖的移动应用程序提高了助行器用户的平衡信心
- 批准号:
497850 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
- 批准号:
2220537 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Using AI to improve our understanding of verbal confidence and to aid decision-making: Eyewitness lineup identification as a model case
使用人工智能提高我们对言语信心的理解并辅助决策:以目击者阵容识别为典型案例
- 批准号:
2241989 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Building Confidence through Inquiry, Research, Community Leadership, and Engagement
通过探究、研究、社区领导和参与建立信心
- 批准号:
2236107 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant