Aspekte der Wärmeleitung auf speziellen Mannigfaltigkeiten und Anwendungen in der Operatortheorie

特殊流形上的热传导问题及其在算子理论中的应用

基本信息

  • 批准号:
    69363446
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Independent Junior Research Groups
  • 财政年份:
    2008
  • 资助国家:
    德国
  • 起止时间:
    2007-12-31 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Für spezielle Riemannsche Mannigfaltigkeiten M sollen Aspekte der Wärmeleitung und Anwendungen in der Operatortheorie untersucht werden. Insbesondere ist geplant, die spektrale Zetafunktion von (Sub-)Laplace Operatoren - eine Verallgemeinerung der Riemannschen Zetafunktion - auf glatten Funktionen und Formen sowie deren jeweilige meromorphe Fortsetzung explizit zu berechnen. Über den Begriff der regelarisierten Determinante ergeben sich M zugeordnete topologische Invarianten wie die Torsion. Der Wärmeleitungskern des invarianten Sub-Laplace Operators auf n-stufig nilpotenten Liegruppen ist für n = 2 in vielen Fällen bestimmt und lässt sich via spektraler Zerlegung oder der komplexen Hamilton-Jacobi Theorie behandeln. Im Fall n > 2 ist hingegen wenig bekannt, und die Darstellung solcher Kerne in Ausdrücken spezieller Funktionen oder das ”Kurzzeitverhalten” sowie die Entwicklung eines geeigneten Rahmens der Analyse sollen versucht werden. Verallgemeinerte Lösungen der Wärmeleitungsgleichung bzw. die sogenannte Berezin Transformation haben wesentliche Anwendungen in der Operatortheorie über Räumen mit reproduzierendem Kern und führen dort etwa zu Charakterisierungen von gewissen Operatoridealen. Im Vergleich zu den klassischen Bergman Räumen erfordern Fälle harmonischer oder pluriharmonischer Funktionen auf geeigneten symmetrischen Gebieten von ähnlichem Typ einen neuen Zugang und sollen thematisiert werden.
Für Spezielle Riemannsche Mannigfortigkeiten M Sollen Aspkte der Wärmeleitung and Anwendungen in der Operator Theorie untersuht den.这是一种地质学,它是一种特殊的技术,它的目的是为了更好地发挥其功能和更好地发挥其作用。区域边界和区域确定的范围不变,也不受扭矩影响。Des Wärmeleitungskern des Constantanten Sub-Laplace算子is fürn=2在Vielen Fällen Bstimt and Lässt Sich中由特殊的Zerleung oder Komplexen Hamilton-Jacobi定理得到。我是下降n>2是铰链,并在Ausdrücken SPEZILER SPEZILER Funktionen Das“Kurzzeitverhalten”Sowie die Entwicklug eines geeigneten Rahmens Der分析Sollen versuht den。在歌剧理论中,所有的人都认为这是一件非常重要的事情。但这并不意味着这就是我们要做的。我是Vergleich zu den Klassischen Bergman Räumen erfordern Fälle Hardcher On the Multiple-Hardcher Funktionen Auf f f Geeigneten symmetrischen Gebieten vonähnlicem Typ einen neuen Zuang and Sollen Tatisiert。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfram Bauer其他文献

Professor Dr. Wolfram Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfram Bauer', 18)}}的其他基金

Spectral Analysis of Sub-Riemannian Structures
亚黎曼结构的谱分析
  • 批准号:
    339362576
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Commutative algebras generated by Toeplitz operators - Gelfand theory and spectral properties
Toeplitz 算子生成的交换代数 - Gelfand 理论和谱特性
  • 批准号:
    237774273
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of sub-Riemannian structures and related operators
亚黎曼结构及相关算子分析
  • 批准号:
    189396777
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Der lin-1在头颈部鳞癌中对紫杉醇耐药性作用机制的研究
  • 批准号:
    2022JJ70171
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
γδT17细胞通过GRPR和NPRA通路介导尘螨Der f 2诱发特应性皮炎瘙痒的机制
  • 批准号:
    82171764
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Van der Waals 异质结中层间耦合作用的同步辐射研究
  • 批准号:
    U2032150
  • 批准年份:
    2020
  • 资助金额:
    60.0 万元
  • 项目类别:
    联合基金项目
BaP和Der p1通过AhR-ORMDL3轴促进过敏性哮喘作用机制的研究
  • 批准号:
    2020A151501607
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
二维van der Waals铁磁性绝缘材料的高压研究
  • 批准号:
    11904416
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Der p2 B细胞表位mRNA疫苗构建及治疗呼吸道过敏性疾病的作用研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于整合结构质谱技术的尘螨过敏特异性蛋白复合物IgE-Der p2的相互作用研究
  • 批准号:
    21904142
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于黑磷烯van der Waals异质结的GHz带宽光通讯波段探测器研究
  • 批准号:
    61704082
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于石墨烯衬底van der Waals薄膜气-液-固外延生长的高质量氧化锌制备
  • 批准号:
    61604062
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
具脉冲影响的Van der Pol方程的复杂动力学行为研究
  • 批准号:
    11626145
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Indistinguishable Quantum Emitters in van der Waals Materials
范德华材料中难以区分的量子发射器
  • 批准号:
    DP240103127
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
  • 批准号:
    2340773
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
  • 批准号:
    2340918
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Design and synthesis of functional van der Waals magnets
职业:功能性范德华磁体的设计与合成
  • 批准号:
    2338229
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Disruptive development of van der Waals semiconductors by enabling anion-controlled functionalities
通过实现阴离子控制功能来实现范德华半导体的颠覆性发展
  • 批准号:
    EP/X032116/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了