Fundamental Technologies for Machine Learning Centric Data Trading
以机器学习为中心的数据交易的基础技术
基本信息
- 批准号:22KJ1721
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-03-08 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have made a significant advance in building a reliable data market for machine learning (ML) applications. Concretely, in a collaborative data marketplace where multiple data owners collaborate to train an ML model, it is essential to evaluate the owners' diverse contributions to the model's utility to encourage fair cooperation. However, existing studies have neglected the potential privacy leakage in the contribution evaluation process. We have proposed pioneering methods for privacy-preserving contribution evaluation in collaborative ML to address this significant limitation. Our methods enable buyers to estimate data products' qualities before purchasing without accessing the products and sacrificing data owners' privacy, which considerably promotes reliable data trading.
我们在为机器学习(ML)应用程序建立可靠的数据市场方面取得了重大进展。具体地说,在多个数据所有者协作训练ML模型的协作数据市场中,评估所有者对模型效用的不同贡献是至关重要的,以鼓励公平合作。然而,现有的研究忽略了投稿评估过程中潜在的隐私泄露。针对这一缺陷,我们提出了协作式ML中隐私保护贡献评估的开创性方法。我们的方法使买家能够在购买前评估数据产品的质量,而无需访问产品和牺牲数据所有者的隐私,从而极大地促进了可靠的数据交易。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FL-Market: Trading Private Models in Federated Learning
- DOI:10.1109/bigdata55660.2022.10020232
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shuyuan Zheng;Yang Cao;Masatoshi Yoshikawa;Huizhong Li;Qiang Yan
- 通讯作者:Shuyuan Zheng;Yang Cao;Masatoshi Yoshikawa;Huizhong Li;Qiang Yan
Secure Shapley Value for Cross-Silo Federated Learning
- DOI:10.14778/3587136.3587141
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Shuyuan Zheng;Yang Cao;Masatoshi Yoshikawa
- 通讯作者:Shuyuan Zheng;Yang Cao;Masatoshi Yoshikawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
鄭 舒元其他文献
鄭 舒元的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Data Privacy Protection in Wireless Sensor Networks
无线传感器网络中的数据隐私保护
- 批准号:
DP240102140 - 财政年份:2024
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Projects
A Consensus-Building Model for Balancing Privacy Protection and Learning Data Analysis in Education
平衡教育中隐私保护和学习数据分析的共识建立模型
- 批准号:
23K02633 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Voice information-hiding/anonymization technology for voice privacy protection
语音信息隐藏/匿名化技术,保护语音隐私
- 批准号:
23K18491 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219487 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Child Privacy Protection Engine for Smart Anthropomorphic Toys
智能拟人玩具儿童隐私保护引擎
- 批准号:
RGPIN-2016-05023 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Secure Crowdsourcing Classification with Privacy Protection against Servers
通过针对服务器的隐私保护来确保众包分类的安全
- 批准号:
DP220100003 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Projects
Towards full lifecycle privacy protection on cloud
实现云端全生命周期隐私保护
- 批准号:
LP190100395 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Linkage Projects
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219488 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant