Mathematical Modeling of Drug Resistance Evolution and The Optimal Treatment Strategy in EGFR Mutated Lung Cancer

EGFR突变肺癌耐药演化的数学模型及最佳治疗策略

基本信息

  • 批准号:
    22KJ0768
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-03-08 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

In 2022, I followed my research plan and made some progress. My research is about using a mathematical model to simulate tumor progression in different therapies and predict the optimal treatment strategies for patients. Firstly, in order to get the data for model simulation, I established two types of EGFR mutation cells and co-culture them. In this experiment, I observed that drug-sensitive cells survived in drugs even with only 10% existence of drug-resistant cells. Also, this kind of co-culture response is different from different drugs, we may explore the mechanism of this phenomenon in the future. Secondly, I simulated the time course of tumor progression in different therapy strategies and analyzed the influence effect of drug-resistance cells on drug-sensitive cells through computational simulation. In this theoretical analysis, results indicated that although all-drug-resistant cells are expected to be the strongest support for helping all-drug-sensitive cells to survive because they resistant all therapy drugs, but actually it does not. Out of expectation, secondary mutation cells, which are one-drug-resistant cells, help the survivor of all-drug-sensitive cells more than all-drug-resistant cells. This might because the growth of all-drug-resistant cells is slower compared with one-drug-resistant cells in the corresponding drugs, which means all-drug-resistant cells may spend more “effort” in “self-survivor”. We would like to research its mechanism in the future, too.
在2022年,我按照我的研究计划,取得了一些进展。我的研究是使用数学模型来模拟不同治疗方法下肿瘤的进展,并预测患者的最佳治疗策略。首先,为了获得模型模拟所需的数据,我建立了两种EGFR突变细胞并进行共培养。在这个实验中,我观察到即使只有10%的耐药细胞存在,药敏细胞也能在药物中存活。此外,这种共培养反应因药物不同而不同,我们可以在未来探索这种现象的机制。其次,模拟不同治疗策略下肿瘤进展的时间过程,通过计算模拟分析耐药细胞对药敏细胞的影响作用。在本理论分析中,结果表明,虽然全耐药细胞被认为是帮助全药敏感细胞生存的最有力的支持,因为它们对所有治疗药物都具有耐药性,但实际上并非如此。出乎意料的是,二次突变细胞,即一种耐药细胞,比所有耐药细胞更能帮助所有药物敏感细胞的幸存者。这可能是因为在相应的药物中,全耐药细胞的生长速度比单耐药细胞慢,这意味着全耐药细胞可能在“自我生存”中花费更多的“努力”。我们也想在未来研究它的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Qian其他文献

Morphological Characteristics of Low-angle Dunes on a Tidal Ridge, the Jiangsu Macrotidal Coast, China
江苏大潮汐沿岸潮脊低角沙丘形态特征
  • DOI:
    10.2112/si95-139.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Li;Yu Qian;Zhang Yongzhan;Gao Shu
  • 通讯作者:
    Gao Shu
Stage-specific regulation of oligodendrocyte development by Hedgehog signaling in the spinal cord.
脊髓中刺猬信号对少突胶质细胞发育的阶段特异性调节。
  • DOI:
    10.1002/glia.23729
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xu Xiaofeng;Yu Qian;Fang Minxi;Yi Min;Yang Aifen;Xie Binghua;Yang Junlin;Zhang Zunyi;Dai Zhongmin;Qiu Mengsheng
  • 通讯作者:
    Qiu Mengsheng
Co-Occurrence and Cyclical Growth Law Analysis of User Innovation Knowledge Map Based on Temporal-Weighted Network
基于时间加权网络的用户创新知识图谱共现及循环增长规律分析
  • DOI:
    10.1109/access.2019.2914234
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wang Qiaojiayu;Wang Dejiang;Bai Gengyuan;Yu Qian
  • 通讯作者:
    Yu Qian
Evolutionary Voluntary Prisoner's Dilemma Game under Deterministic and Stochastic Dynamics
确定性和随机动力学下的进化自愿囚徒困境博弈
  • DOI:
    10.3390/e17041660
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yu Qian;Chen Ran;Wen Xiaoyan
  • 通讯作者:
    Wen Xiaoyan
Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities
具有可切换杀菌和释放细菌能力的智能抗菌表面
  • DOI:
    10.1021/acsami.7b13565
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Wei Ting;Tang Zengchao;Yu Qian;Chen Hong
  • 通讯作者:
    Chen Hong

Yu Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Community Impact with Teacher Leaders in Data Science and Mathematical Modeling
数据科学和数学建模领域教师领导者的社区影响
  • 批准号:
    2345194
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    2414705
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
RUI: Mathematical Modeling of Microglia
RUI:小胶质细胞的数学建模
  • 批准号:
    2245839
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Optimizing the sustainability of car sharing using mathematical modeling
使用数学模型优化汽车共享的可持续性
  • 批准号:
    EP/Y008014/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
LEAPS-MPS: Mathematical Modeling of Brain Structure in Neurodegenerative Diseases Exhibiting Prion-Like Spreading
LEAPS-MPS:表现出朊病毒样传播的神经退行性疾病中大脑结构的数学模型
  • 批准号:
    2316952
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
  • 批准号:
    23K03225
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
  • 批准号:
    10793008
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
CK22-008, Building Mathematical Modeling Workforce Capacity to Support Infectious Disease and Healthcare Research - 2022
CK22-008,建立数学建模劳动力能力以支持传染病和医疗保健研究 - 2022
  • 批准号:
    10913951
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Physical modeling, excised larynx, mathematical modeling of voice instability induced by vocal membranes and their implications to the evolution of language
物理模型、切除的喉部、声膜引起的声音不稳定的数学模型及其对语言进化的影响
  • 批准号:
    23H03424
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了