Applications of Mathematical Logic in Theoretical Computer Science
数理逻辑在理论计算机科学中的应用
基本信息
- 批准号:08680356
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Main aim of this project is to study various logical problems appearing in computer science from both theoretical and practical point of view. In particular, we planned to bring the following subjects into focus, at the beginning.1. linear logic and substructural logics, in general, as logic of action and logic of resources,2. reasoning about knowledge, based on epistemic logic and cummulative reasoning,3. descriptions of specifications of software based on temporal logics and their verifications,4. reduction systems, in particular, term rewriting systems, and their applications to functional programming languages.1. One is now developing a general theory of substructural logics without contraction rule, by using algebraic methods. The study shows that within the framework of logics without contraction rule, we can discuss various kinds of logics, including BCK logics, intuitionistic logic, Lukasiewicz's many-valued logics and even some of fuzzy logics in a uniform way. Ishihara and Kashima discussed various implicational logics and their connections with typed lambda calculi.2. Some studies has been done by One in belief revision and its relation to reasoning of other types, like inductive reasoning and cummulative reasoning.3. A very important theoretical study has been done by F.Wolter, who was a member of our project in 1996. Among others, he obtained strong results on the decision problems on temporal logics. This topics is related also to modal logic. Aoto and Ono have developed the study of the intuitionistic modal logics in collaboration with F.Wolter, M.Zakharyaschev and G.Bezhanishvili, who stayd at JAIST at least a half of the term of the present project.4. Toyama and Aoto obtained interesting results on term rewriting systems, in particular on the termination, the confluence and the modularity of these systems, in collaboration with M.Sakai who was a member of our project in 1996.
该项目的主要目的是从理论和实践的角度研究计算机科学中出现的各种逻辑问题。特别是,我们计划在会议上重点讨论以下问题。线性逻辑和子结构逻辑,一般来说,作为行动逻辑和资源逻辑,2。基于认知逻辑和累积推理的知识推理;基于时序逻辑的软件规格说明及其验证; 4.约简系统,特别是项重写系统,以及它们在函数式编程语言中的应用。目前,人们正在用代数方法发展一种不需要压缩规则的子结构逻辑的一般理论。研究表明,在没有压缩规则的逻辑框架内,我们可以统一地讨论各种逻辑,包括BCK逻辑、直觉逻辑、Lukasiewicz的多值逻辑,甚至某些模糊逻辑。石原和鹿岛讨论了各种蕴涵逻辑及其与类型lambda演算的联系。One对信念修正及其与其他类型推理(如归纳推理和累积推理)的关系做了一些研究. 1996年我们项目的成员F.Wolter做了一个非常重要的理论研究。除其他外,他获得了强有力的结果的决定问题的时间逻辑。这个主题也与模态逻辑有关。Aoto和Ono与F.Wolter、M.Zakharyaschev和G.Bezhanishvili合作开展了直觉模态逻辑的研究,他们在JAIST至少呆了本项目的一半时间。富山和Aoto获得了有趣的结果,长期重写系统,特别是对终止,汇合和这些系统的模块化,在合作与酒井先生谁是我们的项目的成员在1996年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R.Kashima: "Contraction-elimination for implicational logics" Annals of Pure and Applied Logic. Vol.84, No.1. 17-39 (1997)
R.Kashima:“蕴涵逻辑的收缩消除”纯逻辑与应用逻辑年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小野寛晰: "Algebraic semantics for predicate logics and their completeness" Logic at Work. (1997)
Hiroaki Ono:“谓词逻辑的代数语义及其完整性”《逻辑在工作》(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
ヴォルターフランク: "Completeness and decidability of tense logics closely related to logics above K4" Journal of Symbolic Logic. (1996)
Wolter Frank:“与 K4 以上逻辑密切相关的时态逻辑的完整性和可判定性”《符号逻辑杂志》(1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
青戸 等人: "On composable properties of term rewriting systems" Lecture Notes in Computer Science. 1298. 114-128 (1997)
Toto Aoto:“关于术语重写系统的可组合属性”计算机科学讲义。1298. 114-128 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Aoto and Y.Toyama: "Persistency of confluence" Journal of Universal Computer Science. Vol.3, No.11. 1134-1147 (1997)
T.Aoto 和 Y.Toyama:“融合的持久性”《通用计算机科学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONO Hiroakira其他文献
ONO Hiroakira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONO Hiroakira', 18)}}的其他基金
Advances in Logics by Algebraic Methods
代数方法的逻辑进展
- 批准号:
17540109 - 财政年份:2005
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Substructural Logics and their Algebraic Structures
子结构逻辑及其代数结构
- 批准号:
13640109 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advances in Nonstandard Logic
非标准逻辑的进展
- 批准号:
10440027 - 财政年份:1998
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
Quantitative verification of software families based on coalgebraic modal logic and games
基于联代数模态逻辑和博弈的软件族定量验证
- 批准号:
EP/X019373/1 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Modal Logic and Austro-Polish Philosophy
模态逻辑和奥地利-波兰哲学
- 批准号:
493445604 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Heisenberg Grants
An interdisciplinary study of the dynamics of utterances in social communication in terms of dynamic modal logic
从动态模态逻辑角度对社会传播中话语动态进行跨学科研究
- 批准号:
22H00597 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Territories for Modal Logic
模态逻辑的新领域
- 批准号:
446711878 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Independent Junior Research Groups
Ethical Evaluation of Information Disclosure and Shielding by Counterfactual Conditionals: Its Analysis and Proposal for it based on Modal Logic
反事实条件对信息披露与屏蔽的伦理评价:基于模态逻辑的分析与建议
- 批准号:
20K12784 - 财政年份:2020
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modal Logic and Austro-Polish Philosophy
模态逻辑和奥地利-波兰哲学
- 批准号:
386036562 - 财政年份:2017
- 资助金额:
$ 1.54万 - 项目类别:
Heisenberg Fellowships
An Interdisciplinary Study of the Interaction between Utterances and Social Contexts in terms of Dynamic Modal Logic
根据动态模态逻辑对话语与社会语境之间的相互作用进行跨学科研究
- 批准号:
17H02258 - 财政年份:2017
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Coalgebraic Modal Logic: Fixpoints and Nested Modalities
代数模态逻辑:不动点和嵌套模态
- 批准号:
EP/F031173/1 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Syntatic Proofs for Major Theorems of Modal Logic
模态逻辑主要定理的综合证明
- 批准号:
333595-2006 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral