Coalgebraic Modal Logic: Fixpoints and Nested Modalities
代数模态逻辑:不动点和嵌套模态
基本信息
- 批准号:EP/F031173/1
- 负责人:
- 金额:$ 39.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modal logic is a formal framework for reasoning about change. Applications of modal logics are abundant in computer science and related disciplines, and a multitude of different logics have been studied in a variety of application contexts. Apart from classical applications in the field of concurrent, mobile and probabilistic systems, modal logics are used in artificial intelligence, e.g. in the context of reasoning with uncertainty and -- in the shape ofdescription logics -- in the field of knowledge representation.Modal logics are also employed to reason about games and coalitional power in multi-agent systems. In economics, they have been used to describe probabilistic information shared by interacting agents whereas e.g. deontic logic, the logic of obligation and permission is studied in philosophy.The study of all of these logics centres around a number of recurring questions, including completeness (``are all valid statements formally derivable?''), decidability (``is the logic amenable to automated reasoning?'') and complexity (``what resources are required to mechanise the logic?''), which are usually studied for each logic individually.Rather than addressing these questions in a per-logic basis, it is clearly desirable to conduct the studies in a uniform framework that encompasses the greatest possible number ofconcretely given logics as special cases.The proposed research investigates and extends a generic framework -- coalgebraic modal logic -- that encompasses a large class of modal logics as specific examples, including all instances mentioned above. The genericity of the approach will lead to software tools that are not only more reliable but also and easier to design, implement and to maintain.
模态逻辑是对变化进行推理的形式框架。模态逻辑在计算机科学和相关学科中的应用非常广泛,并且在各种应用环境中研究了许多不同的逻辑。除了在并发、移动和概率系统领域的经典应用之外,模态逻辑还用于人工智能,例如在不确定性推理的背景下,以及在知识表示领域中以描述逻辑的形式。模态逻辑也被用于推理多智能体系统中的博弈和联盟力量。在经济学中,它们被用来描述相互作用的主体共享的概率信息,而在哲学中则研究义务逻辑、义务逻辑和许可逻辑。所有这些逻辑的研究都围绕着一些反复出现的问题,包括完整性(“所有有效的陈述都是形式上可推导的吗?”)),可判定性(“逻辑是否适用于自动推理?”)和复杂性(“机械化逻辑需要什么资源?”),通常对每个逻辑分别进行研究。与其在每个逻辑的基础上解决这些问题,不如在一个统一的框架中进行研究,这个框架包含了尽可能多的具体给定逻辑作为特殊情况。提出的研究调查并扩展了一个通用框架——共代数模态逻辑——它包含了一大类模态逻辑作为具体示例,包括上述所有实例。这种方法的通用性将导致软件工具不仅更可靠,而且更容易设计、实现和维护。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PSPACE bounds for rank-1 modal logics
1 阶模态逻辑的 PSPACE 界限
- DOI:10.1145/1462179.1462185
- 发表时间:2009
- 期刊:
- 影响因子:0.5
- 作者:Schröder L
- 通讯作者:Schröder L
Modal compact Hausdorff spaces
模态紧豪斯多夫空间
- DOI:10.1093/logcom/exs030
- 发表时间:2012
- 期刊:
- 影响因子:0.7
- 作者:Bezhanishvili G
- 通讯作者:Bezhanishvili G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dirk Pattinson其他文献
Coalgebraic semantics of modal logics: An overview
- DOI:
10.1016/j.tcs.2011.04.023 - 发表时间:
2011-09-02 - 期刊:
- 影响因子:
- 作者:
Clemens Kupke;Dirk Pattinson - 通讯作者:
Dirk Pattinson
A Modal Characterization Theorem for a Probabilistic Fuzzy Description Logic
概率模糊描述逻辑的模态表征定理
- DOI:
10.24963/ijcai.2019/263 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Paul Wild;Lutz Schröder;Dirk Pattinson;Barbara König - 通讯作者:
Barbara König
Uniform Interpolation in Coalgebraic Modal Logic
代数模态逻辑中的一致插值
- DOI:
10.4230/lipics.calco.2017.21 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Seifan;Lutz Schröder;Dirk Pattinson - 通讯作者:
Dirk Pattinson
Dirk Pattinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dirk Pattinson', 18)}}的其他基金
Cool: Coalgebras, Ontologies and Logic
酷:代数、本体论和逻辑
- 批准号:
EP/H016317/1 - 财政年份:2010
- 资助金额:
$ 39.39万 - 项目类别:
Research Grant
相似海外基金
Quantitative verification of software families based on coalgebraic modal logic and games
基于联代数模态逻辑和博弈的软件族定量验证
- 批准号:
EP/X019373/1 - 财政年份:2023
- 资助金额:
$ 39.39万 - 项目类别:
Research Grant
Modal Logic and Austro-Polish Philosophy
模态逻辑和奥地利-波兰哲学
- 批准号:
493445604 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Heisenberg Grants
An interdisciplinary study of the dynamics of utterances in social communication in terms of dynamic modal logic
从动态模态逻辑角度对社会传播中话语动态进行跨学科研究
- 批准号:
22H00597 - 财政年份:2022
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Territories for Modal Logic
模态逻辑的新领域
- 批准号:
446711878 - 财政年份:2021
- 资助金额:
$ 39.39万 - 项目类别:
Independent Junior Research Groups
Ethical Evaluation of Information Disclosure and Shielding by Counterfactual Conditionals: Its Analysis and Proposal for it based on Modal Logic
反事实条件对信息披露与屏蔽的伦理评价:基于模态逻辑的分析与建议
- 批准号:
20K12784 - 财政年份:2020
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A modal logical construction of quantum logic that adds the missing concepts
量子逻辑的模态逻辑构造添加了缺失的概念
- 批准号:
20K19740 - 财政年份:2020
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Model Theory and proof theory of probabilistic logic in propositional and modal team semantics
命题和模态团队语义中概率逻辑的模型理论和证明理论
- 批准号:
19F19797 - 财政年份:2019
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modal Logic and Austro-Polish Philosophy
模态逻辑和奥地利-波兰哲学
- 批准号:
386036562 - 财政年份:2017
- 资助金额:
$ 39.39万 - 项目类别:
Heisenberg Fellowships
An Interdisciplinary Study of the Interaction between Utterances and Social Contexts in terms of Dynamic Modal Logic
根据动态模态逻辑对话语与社会语境之间的相互作用进行跨学科研究
- 批准号:
17H02258 - 财政年份:2017
- 资助金额:
$ 39.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)