Computational Study on the Structure and Learning in the Integrated Neural Networks for Different Sensors

不同传感器的集成神经网络结构和学习的计算研究

基本信息

  • 批准号:
    09680365
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

Biological neural networks play important roles in the sensory infor- mation processing, which is different from artificial neural networks. The retinal neural networks in the visual system, are classified into symmetrical and asymmetrical structures. The asymmetrical networks, which are shown in catfish and cat et al., consist of the linear pathway and the nonlinear pathway. This asymmetrical networks have characteristic properties in the sensory perceptions.The asymmetric structures reflect the function of the neural networks. Thus, this study, first analyzes what is the functions of the asymmetric neural networks in the sensory perception. Second, the integrated neural netwoks are discussed to respond and learn different sensory informations from different perceptual networks. The integrated network consist of several sub-netwoks to recognize objects correctly by using several sensors."Forward Network" receives inputs from corresponding sensor. "Integrating Unit" integrates outputs of all. Forward Networks."Backward Network" receives inputs from Integrating Unit and recostructs the sensory information as its outputs. In the recognition phase, the integ- rated system gets a correct output by modifying the inputs of Forward Networks, the output of Integrating Unit and the confidence of the sensory information repeatedly to maximize a likelihood function , which can be derived by a Bayesian method. It was clarified the system has the improved ability in the integrated networks.
与人工神经网络不同,生物神经网络在感觉信息处理中发挥着重要作用。视觉系统中的视网膜神经网络分为对称结构和非对称结构。在catfish和cat等人的研究中,由线性路径和非线性路径组成。这种非对称网络在感觉知觉中具有独特的性质,其非对称结构反映了神经网络的功能。因此,本研究首先分析了非对称神经网络在感觉知觉中的作用。其次,讨论了整合神经网络对不同感知网络的感知信息的反应和学习。该集成网络由多个子网络组成,通过使用多个传感器来正确识别目标。“前向网络”接收来自相应传感器的输入。“整合股”整合了所有部门的产出。Forward Networks.“后向网络”接收来自整合单元的输入,并将感觉信息重构为其输出。在识别阶段,集成系统通过反复修改前向网络的输入、集成单元的输出和感知信息的置信度,以最大化一个似然函数,从而得到一个正确的输出。结果表明,该系统在综合网络中具有较好的应用能力.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Ishii, Y.Wang: "Learning Feature Weights for Similarity Measures" Proc.IEEE Int.Joint Symposium on Intell.& Syst.INBS'98 May. 27-33 (1998)
N.Ishii、Y.Wang:“学习相似性度量的特征权重”Proc.IEEE Int.Joint Symposium on Intell。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naohiro Ishii: "Function of Nonlinear Osymmetrical Newrol Networks" IEICE Trans.Funda mentals. vol.E80-A,9. 1604-1609 (1997)
Naohiro Ishii:“非线性非对称 Newrol 网络的函数”IEICE Trans.Funda mentals。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshinori Deguchi, Naohiro Ishii: ""Search of Cyclic Patterns in Chaotic Neural Netqork"" Transaction of IEICE on Information and Systems. D-II,Vol.J81-DII,No.4. 752-759 (1998)
Toshinori Deguchi、Naohiro Ishii:“混沌神经网络中循环模式的搜索””IEICE 信息与系统交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naohiro Ishii: "Function of Nonlinear Asymmetrical Neural Networks" IEICE Trans.Fundamentals. Vol E80-A No.9. 1604-1609 (1997)
Naohiro Ishii:“非线性不对称神经网络的函数”IEICE Trans.Fundamentals。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naohiro Ishii: ""Application of Neural Networksto Reliability Analysis"" Research Report of Reliability Group of IEICE. R96-37. 2330 (1997)
Naohiro Ishii:《神经网络在可靠性分析中的应用》IEICE可靠性组研究报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Naohiro其他文献

ISHII Naohiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Naohiro', 18)}}的其他基金

Computational Study on the Cognition and Memory Based on the Nonlinear Analysis for the Asymmetric Neural Networks
基于非对称神经网络非线性分析的认知与记忆计算研究
  • 批准号:
    15K00351
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Studies on the Cognition and Memory Mechanisms of the Layered Neural Network with Asymmetric Structure
非对称结构分层神经网络认知记忆机制的计算研究
  • 批准号:
    21500225
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on Recognition and Memory Mechanism of Asymmetric and Symmetric Layered Neural Networks
非对称与对称分层神经网络识别与记忆机制的计算研究
  • 批准号:
    19500197
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Research on Cognition and Memory Mechanism in Neural Networks with Asymmetric and Symmetric Network Structures
非对称和对称网络结构神经网络认知记忆机制的计算研究
  • 批准号:
    17500154
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Research on Cognition and Memory Mechanism in Neural Networks with Symmetric and Asymmetric Network Structures
对称与非对称网络结构神经网络认知与记忆机制的计算研究
  • 批准号:
    15500134
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Study on Recognition and Memory in the Asymmetric <symmetric Neural Networks
非对称<对称神经网络识别与记忆的计算研究
  • 批准号:
    12680379
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developmental Study on Measuring, Recording & Procession System of EEG during Working and Sleep
测量、记录的发展研究
  • 批准号:
    03555068
  • 财政年份:
    1991
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study of Neural Information Processing by Spacial-Temporal Computation of Electroencephalogram, Electrooculogram and Electromyogram
脑电图、眼电图、肌电图时空计算的神经信息处理研究
  • 批准号:
    01550328
  • 财政年份:
    1989
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development Studies of Measuring and Processing Systgem of EEG Activity during Orking and Sleeping
睡眠时脑电活动测量与处理系统的开发研究
  • 批准号:
    61850055
  • 财政年份:
    1986
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
Study of Information Processing in Neural Systems by Measuring EEG,EOG and EMG.
通过测量脑电图、眼电图和肌电图研究神经系统的信息处理。
  • 批准号:
    61550296
  • 财政年份:
    1986
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CIF: Small: Inference over Asymmetric Network and Data Structures
CIF:小:非对称网络和数据结构的推理
  • 批准号:
    1524250
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Computational Research on Cognition and Memory Mechanism in Neural Networks with Symmetric and Asymmetric Network Structures
对称与非对称网络结构神经网络认知与记忆机制的计算研究
  • 批准号:
    15500134
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymmetric network architecture suitable for internet traffic
适合互联网流量的非对称网络架构
  • 批准号:
    14550382
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了