Adaptive Wavelet Methods for SPDEs

SPDE 的自适应小波方法

基本信息

项目摘要

No abstract available
没有可用的摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stephan Dahlke其他文献

Professor Dr. Stephan Dahlke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stephan Dahlke', 18)}}的其他基金

Adaptive High-Order Quarklet Frame Methods for Elliptic Operator Equations
椭圆算子方程的自适应高阶 Quarklet 框架方法
  • 批准号:
    451355735
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
"New Smoothness Spaces on Domains and Their Discrete Characterization"
“域上的新平滑空间及其离散特征”
  • 批准号:
    373295677
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Regularity Theory of Stochastic Partial Differential Equations in (Quasi-)Banach Spaces
(拟)Banach空间中随机偏微分方程的正则理论
  • 批准号:
    243356303
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Wavelet and Frame Techniques for Acoustic BEM
声学边界元法的自适应小波和框架技术
  • 批准号:
    223613512
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimal adaptive finite element and wavelet methods for p-Poisson equations
p-泊松方程的最优自适应有限元和小波方法
  • 批准号:
    222275489
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Koordination des Schwerpunktprogramms "Mathematische Methoden zur Extraktion quantifizierbarer Information aus komplexen Systemen"
协调优先计划“从复杂系统中提取可量化信息的数学方法”
  • 批准号:
    78969336
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet frame methods for operator equations: Sparse grids, vector-valued spaces and applications to nonlinear inverse parabolic problems
算子方程的自适应小波框架方法:稀疏网格、向量值空间及其在非线性反抛物线问题中的应用
  • 批准号:
    79623579
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet methods for inverse problems and inverse parabolic equations
反问题和反抛物线方程的自适应小波方法
  • 批准号:
    22812949
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multivariate Wavelet Analysis: Constructions and Specific Applications
多元小波分析:结构和具体应用
  • 批准号:
    5334062
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

小波(WAVELET)分析和李群上调和分析
  • 批准号:
    19201014
  • 批准年份:
    1992
  • 资助金额:
    1.3 万元
  • 项目类别:
    青年科学基金项目
脑干听觉诱发电位的(WAVELET)分解研究
  • 批准号:
    39100038
  • 批准年份:
    1991
  • 资助金额:
    3.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimal adaptive finite element and wavelet methods for p-Poisson equations
p-泊松方程的最优自适应有限元和小波方法
  • 批准号:
    222275489
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Wavelet Methods for Structured Financial Products
结构化金融产品的自适应小波方法
  • 批准号:
    79623460
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet frame methods for operator equations: Sparse grids, vector-valued spaces and applications to nonlinear inverse parabolic problems
算子方程的自适应小波框架方法:稀疏网格、向量值空间及其在非线性反抛物线问题中的应用
  • 批准号:
    79623579
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet methods for inverse problems and inverse parabolic equations
反问题和反抛物线方程的自适应小波方法
  • 批准号:
    22812949
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive wavelet-based methods for partial differential equations with application to computational finance
基于自适应小波的偏微分方程方法及其在计算金融中的应用
  • 批准号:
    238567-2001
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Block Thresholding Methods for Adaptive Wavelet Function Estimation: Theory and Applications
自适应小波函数估计的块阈值方法:理论与应用
  • 批准号:
    0296215
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive wavelet-based methods for partial differential equations with application to computational finance
基于自适应小波的偏微分方程方法及其在计算金融中的应用
  • 批准号:
    238567-2001
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Wavelet Methods for Boundary Integral Equations
边界积分方程的自适应小波方法
  • 批准号:
    0296024
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive wavelet-based methods for partial differential equations with application to computational finance
基于自适应小波的偏微分方程方法及其在计算金融中的应用
  • 批准号:
    238567-2001
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Block Thresholding Methods for Adaptive Wavelet Function Estimation: Theory and Applications
自适应小波函数估计的块阈值方法:理论与应用
  • 批准号:
    0072578
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了