Regularity Theory of Stochastic Partial Differential Equations in (Quasi-)Banach Spaces
(拟)Banach空间中随机偏微分方程的正则理论
基本信息
- 批准号:243356303
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with regularity estimates for stochastic partial differential equations (SPDEs, for short) on bounded Lipschitz domains. We use specific (quasi-)Banach spaces to measure the smoothness of the solution. Our analysis is motivated by some fundamental problems arising in the context of the numerical treatment of SPDEs We divide our investigations into three parts which are closely related to each other. In the first two parts we use a specific scale of Besov spaces to measure the spatial regularity of the solution process. This scale determines the convergence order that can be achieved by adaptive (wavelet) schemes and other non-linear approximation methods. It consists mostly of Besov spaces with summability parameter less than one, thus, of quasi-Banach spaces. In the first part we want to derive refined regularity results in weighted Sobolev spaces which yield the desired Besov regularity results by embedding strategies. In the second part, we strive for a more direct approach. To this end, the well-known theory of stochastic integration in UMD-Banach spaces has to be generalized as far as possible to quasi-Banach spaces. In the third part of the project, we want to derive regularity estimates in tensor products of weighted Sobolev spaces which would justify the use of anisotropic full space-time adaptive tensor wavelet methods.
本项目主要研究有界Lipschitz域上随机偏微分方程的正则性估计。我们使用特定的(拟)Banach空间来衡量的光滑性的解决方案。我们的分析是出于一些基本问题的背景下产生的数值处理的SPDE我们分为三个部分,这是密切相关的彼此的调查。在前两部分中,我们使用一个特定尺度的Besov空间来度量解的空间正则性。该尺度决定了自适应(小波)方案和其他非线性近似方法可以实现的收敛阶数。它主要由Besov空间与求和参数小于一个,因此,准Banach空间。在第一部分中,我们希望得到加权Sobolev空间中的精化正则性结果,通过嵌入策略得到所需的Besov正则性结果。在第二部分中,我们努力采取更直接的方法。为此,著名的随机积分理论在UMD-Banach空间已尽可能推广到准Banach空间。在项目的第三部分中,我们希望得到加权Sobolev空间的张量积的正则性估计,这将证明使用各向异性全时空自适应张量小波方法是合理的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Besov regularity for the stationary Navier–Stokes equation on bounded Lipschitz domains
有界 Lipschitz 域上平稳 NavierâStokes 方程的贝索夫正则性
- DOI:10.1080/00036811.2016.1272103
- 发表时间:
- 期刊:
- 影响因子:1.1
- 作者:F. Eckhardt;P.A. Cioica-Licht;S. Dahlke
- 通讯作者:S. Dahlke
On the Convergence Analysis of the Inexact Linearly Implicit Euler Scheme for a Class of Stochastic Partial Differential Equations
一类随机偏微分方程不精确线性隐式欧拉格式的收敛性分析
- DOI:10.1007/s11118-015-9510-5
- 发表时间:2016
- 期刊:
- 影响因子:1.1
- 作者:P.A. Cioica;S. Dahlke;N. Döhring;U. Friedrich;S. Kinzel;F. Lindner;T. Raasch;K. Ritter;R.L. Schilling
- 通讯作者:R.L. Schilling
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stephan Dahlke其他文献
Professor Dr. Stephan Dahlke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stephan Dahlke', 18)}}的其他基金
Adaptive High-Order Quarklet Frame Methods for Elliptic Operator Equations
椭圆算子方程的自适应高阶 Quarklet 框架方法
- 批准号:
451355735 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
"New Smoothness Spaces on Domains and Their Discrete Characterization"
“域上的新平滑空间及其离散特征”
- 批准号:
373295677 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive Wavelet and Frame Techniques for Acoustic BEM
声学边界元法的自适应小波和框架技术
- 批准号:
223613512 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Optimal adaptive finite element and wavelet methods for p-Poisson equations
p-泊松方程的最优自适应有限元和小波方法
- 批准号:
222275489 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Koordination des Schwerpunktprogramms "Mathematische Methoden zur Extraktion quantifizierbarer Information aus komplexen Systemen"
协调优先计划“从复杂系统中提取可量化信息的数学方法”
- 批准号:
78969336 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive wavelet frame methods for operator equations: Sparse grids, vector-valued spaces and applications to nonlinear inverse parabolic problems
算子方程的自适应小波框架方法:稀疏网格、向量值空间及其在非线性反抛物线问题中的应用
- 批准号:
79623579 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive Wavelet Methods for SPDEs
SPDE 的自适应小波方法
- 批准号:
79644281 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive wavelet methods for inverse problems and inverse parabolic equations
反问题和反抛物线方程的自适应小波方法
- 批准号:
22812949 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Multivariate Wavelet Analysis: Constructions and Specific Applications
多元小波分析:结构和具体应用
- 批准号:
5334062 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
- 批准号:
2231863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
- 批准号:
22KJ1172 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




